12 research outputs found

    High membrane fluidity is related to NaCl stress in Candida membranefaciens

    No full text
    The effect of hypersaline stress on the lipid composition of the salt-tolerant yeast Candida membranefaciens was studied. Fatty acid analyses of the plasma membrane showed a growth phase- and dose-dependent increase in the level of linolenic acid (C18:3) in 1.35 M NaCl-stressed cells. Palmitoleic acid (C16:1) was completely undetectable at all phases of the life cycle. Changes in the levels of other fatty acids were insignificant. The degree of unsaturation of fatty acids in the plasma membranes was higher in presence of 1.35 M NaCl. The fluorescence polarisation value of DPH (1,6-diphenyl- 1,3,5-hexatriene) in the spheroplasts of the stressed cells was lower as compared to the control cells, indicating the fact that a higher membrane fluidity favours osmotic adaptation against NaCl stress. Among different phospholipids, levels of Phosphatidylinositol and Phosphatidylethanolamine were elevated in the salt-adapted cells as compared to their controls. The levels of Phosphatidylcholine and cardiolipin did not change significantly in response to hypersaline stress. The study points out that hypersalinity signals affect the lipid composition which in turn affects the membrane fluidity of C. membranefaciens

    Functional reconstitution of a purified proline permease from Candida albicans: interaction with the antifungal cispentacin

    No full text
    We have purified proline permease to homogeneity from Candida albicans using an L-proline-linked agarose matrix as an affinity column. The eluted protein produced two bands of 64 and 67 kDa by SDS-PAGE, whereas it produced a single band of 67 kDa by native PAGE and Western blotting. The apparent Km for L-proline binding to the purified protein was 153 µM. The purified permease was reconstituted into proteoliposomes and its functionality was tested by imposing a valinomycin-induced membrane potential. The main features of L-proline transport in reconstituted systems, viz. specificity and sensitivity to N-ethylmaIeimide, were very similar to those of intact cells. The antifungal cispentacin, which enters C. albicans cells via an inducible proline permease, competitively inhibited the L-proline binding and translocation in reconstituted proteoliposomes. However, the uptake of L-proline in proteoliposomes reconstituted with the purified protein displayed monophasic kinetics with an apparent Km of 40 µM

    Vanadate-resistant mutants of Candida albicans show alterations in phosphate uptake

    No full text
    Phosphate uptake studies in different strains of the dimorphic pathogenic yeast Candida albicans were undertaken to show that this yeast actively transported phosphate with an apparent Km in the range of 90-170 µM. The uptake was pH dependent and derepressible under phosphate starvation. Vanadate-resistant (van) mutants of C. albicans showed a 20-70% reduction in the rate of phosphate uptake in high phosphate medium and was associated with an increased Km and reduced Vmax. The magnitude of depression under phosphate starvation was different between van mutants. These results demonstrate that van mutants may have developed resistance by modifying the rate of entry of vanadate

    Numerical Simulation of a Radial Free Surface Liquid Jet Impinging on a Heated Surface

    No full text
    Impinging liquid jets have been demonstrated to be an effective means of providing high heat transfer rates, and widely used in designing cooling systems for electronic modules, plastic manufacturing, and many other applications in the industry. It is very important to study the factors which govern the heat transfer rate in the liquid impingement on a heated surface to ensure cooling efficiency. The paper presents a numerical approach to study the convective heat transfer of circular liquid jet impingement on a heated surface where influencing factors like surface tension, gravity, viscosity, surface temperature etc. are considered. Finite volume method (FVM) with pressure based coupled solver implemented in commercial ANSYS Fluent CFD is used to solve Reynolds Averaged Navier Stokes equations. Free surface flow is modelled using Volume of Fluid (VOF) Method along with the compressive scheme and sharp interface modelling which accurately captures interfaces between immiscible fluids. The liquid film formation and the heat transfer phenomenon are examined in detail. The influence of jet velocity profiles on pressure distribution and heat transfer along the heated surface is presented. The results obtained from numerical solution are validated against experiment and previously published work with a close match.Godkänd;2021;Nivå 0;2021-02-16 (johcin)</p

    Numerical Simulation of Steam Bubble Condensation Using Thermal Phase Change Model

    No full text
    Evaporation and condensation phenomena play a significant role in many of the nuclear, biochemical, and thermal processes in industrial applications. It is a complicated phenomenon as it undergoes both heat and mass transfer processes along with the complexities involved in the interfacial regions of vapor and liquid phases. Several experimental works have been carried out in the recent past to understand the condensation process in detail. However, understanding the phenomenon using computational technique is more advantageous as the interfacial mass transfer between gas and liquid can be modelled accurately. In the present work, condensation of a saturated vapor bubble in the sub-cooled liquid is studied, and various factors that influence the bubble shape change and the bubble lifetime, are evaluated. The analysis is carried out using the ‘Multi-Fluid Volume of Fluid’ and ‘Thermal Phase Change’ (TPC) models implemented in ANSYS Fluent commercial CFD solver. A detailed study is performed to obtain the best approach for calculating interfacial area density using a ‘user-defined function’ (UDF), and the advantage of the node-based gradient calculation method is exhibited. The numerical results obtained for the history of bubble shape and bubble lifetime are validated against the experiment and previously published works with good accuracy. The paper also elaborates on how the initial bubble diameter, the subcooling temperature, and the system pressure affects the shape and lifetime of the bubble during the condensation process.Godkänd;2021;Nivå 0;2021-02-16 (johcin)</p

    The Sko1p Repressor and Gcn4p Activator Antagonistically Modulate Stress-Regulated Transcription in Saccharomyces cerevisiae

    No full text
    In the transcriptional response of Saccharomyces cerevisiae to stress, both activators and repressors are implicated. Here we demonstrate that the ion homeostasis determinant, HAL1, is regulated by two antagonistically operating bZIP transcription factors, the Sko1p repressor and the Gcn4p activator. A single CRE-like sequence (CRE(HAL1)) at position −222 to −215 with the palindromic core sequence TTACGTAA is essential for stress-induced expression of HAL1. Down-regulation of HAL1 under normal growth conditions requires specific binding of Sko1p to CRE(HAL1) and the corepressor gene SSN6. Release from this repression depends on the function of the high-osmolarity glycerol pathway. The Gcn4p transcriptional activator binds in vitro to the same CRE(HAL1) and is necessary for up-regulated HAL1 expression in vivo, indicating a dual control mechanism by a repressor-activator pair occupying the same promoter target sequence. gcn4 mutants display a strong sensitivity to elevated K(+) or Na(+) concentrations in the growth medium. In addition to reduced HAL1 expression, this sensitivity is explained by the fact that amino acid uptake is drastically impaired by high Na(+) and K(+) concentrations in wild-type yeast cells. The reduced amino acid biosynthesis of gcn4 mutants would result in amino acid deprivation. Together with the induction of HAL1 by amino acid starvation, these results suggest that salt stress and amino acid availability are physiologically interconnected
    corecore