1,035 research outputs found

    Isotope effect on the transition temperature TcT_c in Fe-based superconductors: the current status

    Full text link
    The results of the Fe isotope effect (Fe-IE) on the transition temperature TcT_c obtained up to date in various Fe-based high temperature superconductors are summarized and reanalyzed by following the approach developed in [Phys. Rev. B 82, 212505 (2010)]. It is demonstrated that the very controversial results for Fe-IE on TcT_c are caused by small structural changes occurring simultaneously with the Fe isotope exchange. The Fe-IE exponent on TcT_c [αFe=(ΔTc/Tc)/(ΔM/M)\alpha_{\rm Fe}=-(\Delta T_c/T_c)/(\Delta M/M), MM is the isotope mass] needs to be decomposed into two components with the one related to the structural changes (αFestr\alpha_{\rm Fe}^{\rm str}) and the genuine (intrinsic) one (αFeint\alpha_{\rm Fe}^{\rm int}). The validity of such decomposition is further confirmed by the fact that αFeint\alpha_{\rm Fe}^{\rm int} coincides with the Fe-IE exponent on the characteristic phonon frequencies αFeph\alpha_{\rm Fe}^{\rm ph} as is reported in recent EXAFS and Raman experiments.Comment: 7 pages, 4 figures. The paper is partially based on the results published in [New J. Phys. 12, 073024 (2010) = arXiv:1002.2510] and [Phys. Rev. B 82, 212505 (2010) = arXiv:1008.4540

    Universal observation of multiple order parameters in cuprate superconductors

    Full text link
    The temperature dependence of the London penetration depth \lambda was measured for an untwined single crystal of YBa_2Cu_3O_{7-\delta} along the three principal crystallographic directions (a, b, and c). Both in-plane components (\lambda_a and \lambda_b) show an inflection point in their temperature dependence which is absent in the component along the c-direction (\lambda_c). The data provide convincing evidence that the in-plane superconducting order parameter is a mixture of s+d-wave symmetry whereas it is exclusively s-wave along the c-direction. In conjunction with previous results it is concluded that coupled s+d-order parameters are universal and intrinsic to cuprate superconductors.Comment: 5 pages, 3 figure

    Iron isotope effect on the superconducting transition temperature and the crystal structure of FeSe_1-x

    Full text link
    The Fe isotope effect (Fe-IE) on the transition temperature T_c and the crystal structure was studied in the Fe chalcogenide superconductor FeSe_1-x by means of magnetization and neutron powder diffraction (NPD). The substitution of natural Fe (containing \simeq 92% of ^{56}Fe) by its lighter ^{54}Fe isotope leads to a shift of T_c of 0.22(5)K corresponding to an Fe-IE exponent of \alpha_Fe=0.81(15). Simultaneously, a small structural change with isotope substitution is observed by NDP which may contribute to the total Fe isotope shift of T_c.Comment: 4 pages, 3 figure

    Correlation between the transition temperature and the superfluid density in BCS superconductor NbB_2+x

    Full text link
    The results of the muon-spin rotation experiments on BCS superconductors NbB_2+x (x = 0.2, 0.34) are reported. Both samples, studied in the present work, exhibit rather broad transitions to the superconducting state, suggesting a distribution of the volume fractions with different transition temperatures (T_c)'s. By taking these distributions into account, the dependence of the inverse squared zero-temperature magnetic penetration depth (\lambda_0^{-2}) on T_c was reconstructed for temperatures in the range 1.5K<T_c<8.0K. \lambda_0^{-2} was found to obey the power law dependence \lambda_0^{-2}\propto T_c^{3.1(1)} which appears to be common for some families of BCS superconductors as, {\it e.g.}, Al doped MgB_2 and high-temperature cuprate superconductors as underdoped YBa_2Cu_3O_{7-\delta}.Comment: 9 pages, 7 figures. Accepted for publication in Phys. Rev.

    Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes

    Get PDF
    Alumina composites reinforced with 3 vol.% multi-walled carbon nanotubes (MWCNTs) were prepared by spark plasma sintering (SPS). The influence of sintering temperature (1400-1600 °C) on the composites microstructure and mechanical properties was investigated. Microstructure observations of the composite shows that some CNTs site along alumina grains boundary, while others embed into the alumina grains and shows that CNTs bonded strongly with the alumina matrix contributing to fracture toughness and microhardness increase. MWCNTs reinforcing mechanisms including CNT pull-out and crack deflection were directly observed by scanning electron microscope (SEM). For Al[2]O[3]/CNT composite sintered at 1600 °C, fracture toughness and microhardness are 4.93 MPa•m{1/2} and 23.26 GPa respectively

    執筆者紹介

    Get PDF
    It is established that the average (over the number of bonds) intensity of the superexchange interaction of the Fe**3** plus ion with magnetic neighbors decreases by 10% on replacement of one oxygen ion with a fluorine ion, irrespective of the nature of the cation substitution
    corecore