2 research outputs found

    Physical and mechanical evaluation of porous asphalt incorporated with untreated and treated waste cooking oil

    Get PDF
    The vast amount of waste cooking oil (WCO) has invited odds effects on the environment when disposed of improperly. Incorporating waste materials into asphalt mixture is common practice these days as it minimizes the amount of waste material as well as improves the performance of the mixture. WCO is known for its natural fluidity characteristics, wherein affecting good cracking performance at low temperature, yet indicate poor rutting resistance at high temperature. Plus, less strength in porous asphalt has worsened the rutting condition. Hence, pretreatment of WCO is suggested before the modification was done. In this study, WCO is being treated with chemical treatment of the transesterification process. Then, the modified binder of 5%, 10%, 15% and 20% untreated and treated WCO were tested with physical testing of penetration and softening point temperature. Later, a similar percentage of untreated and treated WCO were incorporated into porous asphalt mixture to analyze the mechanical performance of Marshall Stability, Flow and Stiffness. The result of porous asphalt mixture with 10% treated WCO showed an improvement in Marshall Stability, Flow and Stiffness. It can be concluded, samples with treated WCO indicated remarkable performance in terms of physical and mechanical evaluation, owing to similar polarity which enhances good interaction bonding that strengthens the asphalt mixture

    Performance of asphaltic concrete modified with recycled crushed bricks

    Get PDF
    The pavement industry relies greatly on this conventional material in constructing the road. However, the shortage of the mined material has led to the need of finding alternative with local materials to partially substitute the asphalt components. The conventional pavement industry also contributed to thermal and greenhouse emission resulting from the mining activities. In addition, throughout the year, the amount of construction and demolition (C&D) waste generated from civil construction activities particularly in Malaysia is increasing in alarming rate. Recycling the C&D waste specifically in bricks is viewed as reasonable potential as aggregate modifier in the impulse for greener and sustainable asphalt pavement production. In this paper, recycled crushed bricks (RCB) is introduced to bituminous wearing course as partial replacement for coarse aggregates. The coarse aggregate is partially replaced with RCB in proportions of 0%, 10%, 20%, 30% and 40% by weight. This study summarizes the results of laboratory evaluation of Los Angeles Abrasion Value, Aggregate Crushing Value and Marshall Test. Results show that asphaltic concrete modified with 10% RCB has the lowest abrasion and crushing values which were 20.2% and 30% respectively. Similarly, the mix has the highest Marshall Stability and lowest flow which 15.61 kN and 3.37 mm respectively. Thus, partial replacement of coarse aggregates with 10% RCB in bituminous mix is suitable to be used in wearing course and can be used as alternative material in bituminous mix to reduce the dependency on natural aggregates and utilize the C&D waste efficiently
    corecore