16 research outputs found

    kt - factorization and CCFM - the solution for describing the hadronic final states - everywhere ?

    Full text link
    The basic ideas of kt-factorization and CCFM parton evolution is discussed. The unintegrated gluon densities, obtained from CCFM fits to the proton structure function data at HERA are used to predict hadronic final state cross sections like jet production at HERA, but also comparisons with recent measurements of heavy quark production at the Tevatron are presented. Finally, the kt-factorization approach is applied to Higgs production at high energy hadron hadron colliders and the transverse momentum spectrum of Higgs production at the LHC is calculated.Comment: to be published in MPLA, replaced with new reference

    Multiple Interactions and the Structure of Beam Remnants

    Full text link
    Recent experimental data have established some of the basic features of multiple interactions in hadron-hadron collisions. The emphasis is therefore now shifting, to one of exploring more detailed aspects. Starting from a brief review of the current situation, a next-generation model is developed, wherein a detailed account is given of correlated flavour, colour, longitudinal and transverse momentum distributions, encompassing both the partons initiating perturbative interactions and the partons left in the beam remnants. Some of the main features are illustrated for the Tevatron and the LHC.Comment: 69pp, 33 figure

    Structure Functions of the Nucleon and their Interpretation

    Get PDF
    The current status of measurements of the nucleon structure functions and their understanding is reviewed. The fixed target experiments E665, CCFR and NMC and the HERA experiments H1 and ZEUS are discussed in some detail. The extraction of parton momentum distribution functions from global fits is described, with particular attention paid to much improved information on the gluon momentum distribution. The status of alpha_s measurements from deep inelastic data is reviewed. Models and non-perturbative approaches for the parton input distributions are outlined. The impact on the phenomenology of QCD of the data at very low values of the Bjorken x variable is discussed in detail. Recent advances in the understanding of the transition from deep inelastic scattering to photoproduction are summarised. Some brief comments are made on the recent HERA measurements of the ep NC and CC cross-sections at very high Q2.Comment: 196 pages, 79 figures, uses ijmpa.sty and psfig.tex (included

    PYTHIA 6.4 Physics and Manual

    Full text link
    The PYTHIA program can be used to generate high-energy-physics `events', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.Comment: 576 pages, no figures, uses JHEP3.cls. The code and further information may be found on the PYTHIA web page: http://www.thep.lu.se/~torbjorn/Pythia.html Changes in version 2: Mistakenly deleted section heading for "Physics Processes" reinserted, affecting section numbering. Minor updates to take into account referee comments and new colour reconnection option

    HERA Collider Physics

    Get PDF
    HERA, the first electron-proton collider, has been delivering luminosity since 1992. It is the natural extension of an impressive series of fixed-target lepton-nucleon scattering experiments. The increase of a factor ten in center-of-mass energy over that available for fixed-target experiments has allowed the discovery of several important results, such as the large number of slow partons in the proton, and the sizeable diffractive cross section at large Q2Q^2. Recent data point to a possible deviation from Standard Model expectations at very high Q2Q^2, highlighting the physics potential of HERA for new effects. The HERA program is currently in a transition period. The first six years of data taking have primarily elucidated the structure of the proton, allowed detailed QCD studies and had a strong impact on the understanding of QCD dynamics. The coming years will bring the era of electroweak studies and high Q2Q^2 measurements. This is therefore an appropriate juncture at which to review HERA results.Comment: 351 pages, 154 figures, submitted to Reviews of Modern Physic

    The influence of age on cerebral tissue oxygenation in vasovagal syncope and orthostatic hypotension

    Get PDF
    Age-related physiological impairment increases susceptibility to syncope. We tested the hypotheses that cerebral oxygenation during orthostatic provocation, as well as the level at which syncope occurs, differs according to age. Non-invasive hemodynamic monitoring and cerebral oximetry were applied during a head-up tilt test in 139 patients with vasovagal syncope (mean (SD) 45, (17) years, 60%-female); 121 patients with orthostatic hypotension (61.4 (19.2) years, 49.6%-female); and 82 patients with a negative head-up tilt test (45 (18) years, 61%-female). Group differences in cerebral tissue oxygenation levels and systolic blood pressure were assessed in supine at 3 and 10 min of orthostatic provocation, 30 s before (i.e., presyncopal phase) and during syncope in age groups of <30, 30-60, and >60 years. During the head-up tilt test, cerebral tissue oxygenation at the presyncopal phase decreased with age, both in patients with vasovagal syncope (<30 years: 66.9 ± 6.2, 30-60: 64.5 ± 6.1, >60: 62.2 ± 5.8%; p = 0.009) and orthostatic hypotension (<30: 67.4 ± 4.4, 30-60: 61.6 ± 6.2, >60: 57.5 ± 3.9; p < 0.001). Mean systolic blood pressure at the presyncopal phase did not differ according to age. Cerebral oxygenation prior to syncope in older individuals with vasovagal syncope and orthostatic hypotension is lower compared with younger individuals independently of systolic blood pressure. This suggests that the level of cerebral oxygenation at which syncope is elected is lower in older individuals

    Monitoring of cerebral oximetry in patients with postural orthostatic tachycardia syndrome

    No full text
    Aims  Postural orthostatic tachycardia syndrome (POTS) is a disorder of unknown aetiology characterized by orthostatic intolerance and tachycardia with diverse other symptoms, including neurocognitive deficits. Cerebral oximetry non-invasively measures cerebral tissue saturation (SctO2) and has been shown to be informative in syncope evaluation. We aimed to assess SctO2 in POTS patients and those with normal response to orthostatic provocation, relative to haemodynamic parameters and symptoms. Methods and results  Thirty-four patients with POTS (29.1 ± 9.5 years; 26 females) and 34 age-/sex-matched controls with normal head-up tilt tests (HUTs) were included. SctO2 at rest and during HUT were compared between POTS and controls. The relation between SctO2, systolic blood pressure (SBP), and heart rate (HR) during HUT was linearly assessed. SctO2 values were related to dizziness or syncope during HUT. The minimum SctO2-value during HUT was lower (65.4 ± 5.6 vs. 68.2 ± 4.2%, P = 0.023) and changes in SctO2 from supine to minimum HUT value were more pronounced in POTS patients (−5.7 ± 2.9% vs. −4.3 ± 2.1%, P = 0.028). Decrease in SBP from supine to minimum HUT value (P = 0.004) and increase in HR from supine to HUT value at 3 min (P = 0.022) correlated with more pronounced SctO2 decrease in POTS but not controls. SctO2 did not predict syncope or dizziness during HUT. Conclusion  Postural orthostatic tachycardia syndrome patients have lower cerebral tissue saturation during orthostatic provocation compared with those subjects having normal haemodynamic response to tilt. Orthostatic decrease in cerebral saturation only weakly correlates with HR increase and does not predict vasovagal reflex in POTS. Other hitherto unknown factors may affect cerebral tissue saturation in POTS

    Cerebral Oximetry in Syncope and Syndromes of Orthostatic Intolerance

    No full text
    Cerebral autoregulation is crucial for maintaining cerebral blood flow and perfusion. In recent years, the importance of cerebral oxygenation in syncope and orthostatic intolerance (OI) has received increased attention. Cerebral tissue oxygenation can be measured by using near-infrared spectroscopy (NIRS), which determines the ratio of oxygenated hemoglobin to total hemoglobin in cerebral tissue. NIRS is non-invasive technology using near-infrared light, which displays real-time cerebral tissue oxygenation. Normal values of cerebral tissue oxygenation in healthy subjects are 60 to 80%. Head-up tilt test (HUT) offers the opportunity to observe the haemodynamic changes precipitating syncope and is, today, the standard method for the evaluation of syncope and orthostatic intolerance syndromes. In previous studies where NIRS was applied during HUT, a significant decrease in cerebral tissue oxygenation both prior to and during loss-of-consciousness in vasovagal syncope (VVS) has been observed. Interestingly, cerebral tissue oxygenation appears to decrease even before haemodynamic changes can be observed. Apart from VVS, cerebral tissue oxygenation decreases during orthostatic provocation in patients with orthostatic hypotension (OH) and postural orthostatic tachycardia syndrome (POTS), in the latter even in the absence of hypotension. Importantly, decline of cerebral tissue oxygenation in VVS and POTS during HUT may not correlate with hemodynamic changes. In this mini review, we summarize the current knowledge of the application of cerebral oximetry in syncope and orthostatic intolerance syndromes, discuss its likely value as a clinical diagnostic tool and also emphasize its potential in the understanding of the relevant pathophysiology

    Serum activity against G protein-coupled receptors and severity of orthostatic symptoms in postural orthostatic tachycardia syndrome

    Get PDF
    Background Postural orthostatic tachycardia syndrome (POTS) is characterized by excessive heart rate increase on standing and orthostatic intolerance. Previous data indicate autoimmune involvement. We studied serum activity against G protein–coupled receptors in relation to symptoms in patients with POTS and controls using a commercial cell‐based assay. Methods and Results Forty‐eight patients with POTS (aged 28.6±10.5 years; 44 women) and 25 healthy individuals (aged 30.7±8.6 years; 21 women) were included. The 10‐item Orthostatic Hypotension Questionnaire (OHQ) was completed by 33 patients with POTS and all controls. Human embryonic kidney 293 cells overexpressing one G protein–coupled receptor: adrenergic α1 receptor, adrenergic β2 receptor, cholinergic muscarinic type 2 receptor, and opioid receptor‐like 1 were treated with sera from all patients. Receptor response was analyzed using a β‐arrestin–linked transcription factor driving transgenic β‐lactamase transcription by fluorescence resonance energy transfer method. Receiver operating characteristic curves were constructed. G protein–coupled receptor activation was related to OHQ indices in linear regression models. Sera from patients with POTS activated all 4 receptors to a higher degree compared with controls (P<0.01 for all). The area under the curve was 0.88 (0.80–0.97, P<0.001) combining all 4 receptors. Adrenergic α1 receptor activation associated with OHQ composite score (β=0.77 OHQ points per SD of activity, P=0.009) and with reduced tolerability for prolonged standing (P=0.037) and walking for short (P=0.042) or long (P=0.001) periods. All 4 receptors were associated with vision problems (P<0.05 for all). Conclusions Our results indicate the presence of circulating proteins activating adrenergic, muscarinic, and nociceptin receptors in patients with POTS. Serum‐mediated activation of these receptors has high predictive value for POTS. Activation of adrenergic α1 receptor is associated with orthostatic symptoms severity in patients with POTS
    corecore