21 research outputs found

    Magnetic Granulometry and Mössbauer Spectroscopy of Synthetic Fe<inf>m</inf>O<inf>n</inf>-TiO<inf>2</inf> Composites

    No full text
    © 2020 IEEE. FemOn-TiO2 particle aggregates have been obtained using the sol-gel method and hydrothermal treatment. It is shown that the synthesis conditions favor forming composites that contain titanomagnetite in very low concentrations. Hysteresis loops and demagnetization curves of anhysteretic remanent magnetization were measured with a vibration sample and a SQUID magnetometer, respectively. Mössbauer spectroscopy, bulk magnetic properties, scanning electron microscopy (SEM) observations, coupled with the theoretical analysis of magnetostatic interaction between finely dispersed particles lead to a conclusion that the studied composites can be viewed as groups of interacting clusters 2-20 μm in size, consisting of chemically heterogeneous, mostly single-domain or close to single-domain particles with an average size of about 100 nm

    Magnetotactic Bacteria and Magnetosomes: Basic Properties and Applications

    No full text
    Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized by a high degree of structural and compositional perfection. Magnetosomes from dead MTB could be preserved in sediments (called fossil magnetosomes or magnetofossils). Under certain conditions, magnetofossils are capable of retaining their remanence for millions of years. This accounts for the growing interest in MTB and magnetofossils in paleo- and rock magnetism and in a wider field of biogeoscience. At the same time, high biocompatibility of magnetosomes makes possible their potential use in biomedical applications, including magnetic resonance imaging, hyperthermia, magnetically guided drug delivery, and immunomagnetic analysis. In this review, we attempt to summarize the current state of the art in the field of MTB research and applications

    High-coercivity magnetic minerals in archaeological baked clay and bricks

    No full text
    The thorough understanding of magnetic mineralogy is a prerequisite of any successful palaeomagnetic or archaeomagnetic study. Magnetic minerals in archaeological ceramics and baked clay may be inherited from the parent material or, more frequently, formed during the firing process. The resulting magnetic mineralogy may be complex, including ferrimagnetic phases not commonly encountered in rocks. Towards this end, we carried out a detailed rock magnetic study on a representative collection of archaeological ceramics (baked clay from combustion structures and bricks) from Bulgaria and Russia. Experiments included measurement of isothermal remanence acquisition and demagnetization as a function of temperature between 20 and \u3e600 °C. For selected samples, low-temperature measurements of saturation remanence and initial magnetic susceptibility between 1.8 and 300 K have been carried out. All studied samples contain a magnetically soft mineral identified as maghemite probably substituted by Ti, Mn and/or Al. Stoichiometric magnetite has never been observed, as evidenced by the absence of the Verwey phase transition. In addition, one or two magnetically hard mineral phases have been detected, differing sharply in their respective unblocking temperatures. One of these unblocking between 540 and 620 °C is believed to be substituted hematite. Another phase unblocks at much lower temperatures, between 140 and 240 °C, and its magnetic properties correspond to an enigmatic high coercivity, stable, low-unblocking temperature (HCSLT) phase reported earlier. In a few samples, high-and low unblocking temperature, magnetically hard phases appear to coexist; in the others, the HCSLT phase is the only magnetically hard mineral present

    The iron distribution and ferromagnetic areas in PEO coatings

    No full text

    The iron distribution and ferromagnetic areas in PEO coatings

    No full text
    corecore