3 research outputs found

    Research of Regenerative Braking Strategy for Electric Vehicles

    Get PDF
    In the context of global energy instability caused by the transformation of global demand for energy and energy resources, one of the most important areas in the automotive industry is the development of electric vehicles. Serial production of high-tech electric vehicles with a long range contributes to the stabilization of the energy market and the sustainable development of the whole fuel-energy sector. To evaluate the possibility of optimizing the electric vehicles energy consumption, various regenerative braking strategies are discussed in the article based on the Nissan Leaf electric vehicle, which simulation model includes submodules of the traction electric motor, hybrid braking system, traction rechargeable battery and tires. In order to test the adequacy of the simulation model to reproduce the relationship between the operating parameters of electric vehicles various systems and evaluate their ability to regenerate energy during braking the simulation results were compared with the actual experimental data published by the Lab Avt research laboratory (USA). The relative error of the mathematical modeling results of the braking energy regeneration processes is 4.5 %, which indicates the adequacy of the electric vehicle simulation model and the possibility of its using as a base for research and comparison of the energy efficiency of various regenerative braking strategies. As the results of experiments have shown, the usage of the proposed control strategy of the regenerative braking maximum force allows increasing 2.14 times the energy recharging traffic to the battery as compared with the basic control strategy of fixed coefficient braking forces distribution with an increase in braking distance by 10 m. An alternative control strategy of regenerative braking optimal efficiency as compared to the basic control strategy provides a reduction in braking distance by 13.2 % at increasing by 84.4 % the amount of energy generated by the electric motor for recharging the batteries. The carried out investigations confirm the available significant potential for improving the efficiency of the electric vehicles usage by developing the control strategy and algorithms of the braking energy regeneration

    ИсслСдованиС стратСгии Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния элСктромобилСй

    Get PDF
    In the context of global energy instability caused by the transformation of global demand for energy and energy resources, one of the most important areas in the automotive industry is the development of electric vehicles. Serial production of high-tech electric vehicles with a long range contributes to the stabilization of the energy market and the sustainable development of the whole fuel-energy sector. To evaluate the possibility of optimizing the electric vehicles energy consumption, various regenerative braking strategies are discussed in the article based on the Nissan Leaf electric vehicle, which simulation model includes submodules of the traction electric motor, hybrid braking system, traction rechargeable battery and tires. In order to test the adequacy of the simulation model to reproduce the relationship between the operating parameters of electric vehicles various systems and evaluate their ability to regenerate energy during braking the simulation results were compared with the actual experimental data published by the Lab Avt research laboratory (USA). The relative error of the mathematical modeling results of the braking energy regeneration processes is 4.5 %, which indicates the adequacy of the electric vehicle simulation model and the possibility of its using as a base for research and comparison of the energy efficiency of various regenerative braking strategies. As the results of experiments have shown, the usage of the proposed control strategy of the regenerative braking maximum force allows increasing 2.14 times the energy recharging traffic to the battery as compared with the basic control strategy of fixed coefficient braking forces distribution with an increase in braking distance by 10Β m. An alternative control strategy of regenerative braking optimal efficiency as compared to the basic control strategy provides a reduction in braking distance by 13.2 % at increasing by 84.4 % the amount of energy generated by the electric motor for recharging the batteries. The carried out investigations confirm the available significant potential for improving the efficiency of the electric vehicles usage by developing the control strategy and algorithms of the braking energy regeneration.Π’ условиях энСргСтичСской Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠΉ трансформациСй глобального спроса Π½Π° ΡΠ½Π΅Ρ€Π³ΠΈΡŽ ΠΈ энСргорСсурсы, ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ Π² автомобилСстроСнии являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° транспортных срСдств Π½Π° элСктричСской тягС. Π‘Π΅Ρ€ΠΈΠΉΠ½ΠΎΠ΅ производство высокотСхнологичных элСктромобилСй с большим запасом Ρ…ΠΎΠ΄Π° способствуСт стабилизации Ρ€Ρ‹Π½ΠΊΠ° энСргорСсурсов ΠΈ устойчивому Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ всСго Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-энСргСтичСского сСктора. Для ΠΎΡ†Π΅Π½ΠΊΠΈ возмоТности ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ энСргопотрСблСния элСктромобилСй Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ стратСгии Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния Π½Π° Π±Π°Π·Π΅ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ элСктромобиля Nissan Leaf, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅ΠΉ субмодули тягового элСктродвигатСля, Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠΉ систСмы, тяговой аккумуляторной Π±Π°Ρ‚Π°Ρ€Π΅ΠΈ ΠΈ шин. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ модСлирования ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΠ»ΠΈΡΡŒ с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π°ΡƒΡ‡Π½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΎΠΉ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ Lab Avt (БША), ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ для ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ адСкватности ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, воспроизводящих взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… систСм элСктромобиля ΠΈ ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΈΡ… ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ ΠΏΡ€ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ. ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² матСматичСского модСлирования процСссов Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ энСргии составляСт 4,5 %, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎΠ± адСкватности ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ элСктромобиля ΠΈ возмоТности Π΅Π΅ использования Π² качСствС Π±Π°Π·ΠΎΠ²ΠΎΠΉ для исслСдований ΠΈ сопоставлСния энСргоэффСктивности Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… стратСгий Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния. Как ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ экспСримСнтов, использованиС ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠΉ стратСгии управлСния максимальной силой Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния позволяСт ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ Ρ‚Ρ€Π°Ρ„ΠΈΠΊ энСргии подзарядки Π² 2,14 Ρ€Π°Π·Π° ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π±Π°Π·ΠΎΠ²ΠΎΠΉ стратСгиСй управлСния Π½Π° основС фиксированного коэффициСнта распрСдСлСния Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½Ρ‹Ρ… усилий ΠΏΠΎ осям транспортного срСдства ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ Π½Π° 10Β ΠΌ. ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Π°Ρ стратСгия управлСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ тормоТСния обСспСчиваСт ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π±Π°Π·ΠΎΠ²ΠΎΠΉ стратСгиСй ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ Π½Π° 13,2Β % ΠΏΡ€ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Π½Π° 84,4Β % количСства Π²Ρ‹Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ элСктродвигатСлСм энСргии для подзарядки тяговых аккумуляторных Π±Π°Ρ‚Π°Ρ€Π΅ΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉΡΡ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» ΠΏΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ эффСктивности использования элСктромобилСй Π·Π° счСт ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ стратСгии ΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² управлСния Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ энСргии тормоТСния

    Welcome speech of the rector of BNTU

    Get PDF
    corecore