23 research outputs found
Evaluation of the Main CEOS Pseudo Calibration Sites Using MODIS BRDF/ALBEDO Products
This work describes our findings about an evaluation of the stability and the consistency of twenty primary PICSs (Pseudo-Invariant Calibration Sites). We present an analysis of 13 years of 8-daily MODIS products of BRDF parameters and white-sky-albedos (WSA) over the shortwave band. This time series of WSA and BRDFs shows the variation of the “stability” varies significantly from site to site. Using a 10x10 km window size over all the sites, the change in of WSA stability is around 4% but the isotropicity, which is an important element in inter-satellite calibration, can vary from 75% to 98%. Moreover, some PICS, especially, Libya-4 which is one of the PICS which is most employed, has significant and relatively fast changes in wintertime. PICS observations of BRDF/albedo shows that the Libya-4 PICS has the best performance but it is not too far from some sites such as Libya-1 and Mali. This study also reveals that Niger-3 PICS has the longest continuous period of high stability per year, and Sudan has the most isotropic surface. These observations have important implications for the use of these sites
Assessment of Satellite-Derived Surface Reflectances by NASA’s CAR Airborne Radiometer over Railroad Valley Playa
CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada, USA (38.504°N, 115.692°W). The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CAR’s land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol effects in the EO derived reflectance
Sea Ice Albedo from MISR and MODIS: Production, Validation, and Trend Analysis
he Multi-angle Imaging SpectroRadiometer (MISR) sensor onboard the Terra satellite provides high accuracy albedo products. MISR deploys nine cameras each at different view angles, which allow a near-simultaneous angular sampling of the surface anisotropy. This is particularly important to measure the near-instantaneous albedo of dynamic surface features such as clouds or sea ice. However, MISR’s cloud mask over snow or sea ice is not yet sufficiently robust because MISR’s spectral bands are only located in the visible and the near infrared. To overcome this obstacle, we performed data fusion using a specially processed MISR sea ice albedo product (that was generated at Langley Research Center using Rayleigh correction) combining this with a cloud mask of a sea ice mask product, MOD29, which is derived from the MODerate Resolution Imaging Spectroradiometer (MODIS), which is also, like MISR, onboard the Terra satellite. The accuracy of the MOD29 cloud mask has been assessed as >90% due to the fact that MODIS has a much larger number of spectral bands and covers a much wider range of the solar spectrum. Four daily sea ice products have been created, each with a different averaging time window (24 h, 7 days, 15 days, 31 days). For each time window, the number of samples, mean and standard deviation of MISR cloud-free sea ice albedo is calculated. These products are publicly available on a predefined polar stereographic grid at three spatial resolutions (1 km, 5 km, 25 km). The time span of the generated sea ice albedo covers the months between March and September of each year from 2000 to 2016 inclusive. In addition to data production, an evaluation of the accuracy of sea ice albedo was performed through a comparison with a dataset generated from a tower based albedometer from NOAA/ESRL/GMD/GRAD. This comparison confirms the high accuracy and stability of MISR’s sea ice albedo since its launch in February 2000. We also performed an evaluation of the day-of-year trend of sea ice albedo between 2000 and 2016, which confirm the reduction of sea ice shortwave albedo with an order of 0.4–1%, depending on the day of year and the length of observed time window
Histogrammes spatiaux couleur optimisés pour l'indexation d'images par le contenu
- Dans cet article, nous présentons une méthode qui augmente l'efficacité et la précision des systèmes d'indexation et de recherche d'images couleur par le contenu basés sur les histogrammes spatiaux. Cette technique consiste essentiellement à extraire les informations spatiales de l'image en la divisant en plusieurs sous-images rectangulaires interférées (grille des histogrammes). La méthodologie proposée optimise, via une combinaison linéaire, le découpage horizontal et vertical de l'image pour le calcul des histogrammes spatiaux. Nous augmentons ainsi la performance de la recherche en réduisant en même temps le coût de stockage et le temps de calcul par rapport aux méthodes classiques dont le choix concernant le découpage reste arbitraire
Intercomparison of Surface Albedo Retrievals from MISR, MODIS, CGLS Using Tower and Upscaled Tower Measurements
Surface albedo is of crucial interest in land–climate interaction studies, since it is a key parameter that affects the Earth’s radiation budget. The temporal and spatial variation of surface albedo can be retrieved from conventional satellite observations after a series of processes, including atmospheric correction to surface spectral bi-directional reflectance factor (BRF), bi-directional reflectance distribution function (BRDF) modelling using these BRFs, and, where required, narrow-to-broadband albedo conversions. This processing chain introduces errors that can be accumulated and then affect the accuracy of the retrieved albedo products. In this study, the albedo products derived from the multi-angle imaging spectroradiometer (MISR), moderate resolution imaging spectroradiometer (MODIS) and the Copernicus Global Land Service (CGLS), based on the VEGETATION and now the PROBA-V sensors, are compared with albedometer and upscaled in situ measurements from 19 tower sites from the FLUXNET network, surface radiation budget network (SURFRAD) and Baseline Surface Radiation Network (BSRN) networks. The MISR sensor onboard the Terra satellite has 9 cameras at different view angles, which allows a near-simultaneous retrieval of surface albedo. Using a 16-day retrieval algorithm, the MODIS generates the daily albedo products (MCD43A) at a 500-m resolution. The CGLS albedo products are derived from the VEGETATION and PROBA-V, and updated every 10 days using a weighted 30-day window. We describe a newly developed method to derive the two types of albedo, which are directional hemispherical reflectance (DHR) and bi-hemispherical reflectance (BHR), directly from three tower-measured variables of shortwave radiation: downwelling, upwelling and diffuse shortwave radiation. In the validation process, the MISR, MODIS and CGLS-derived albedos (DHR and BHR) are first compared with tower measured albedos, using pixel-to-point analysis, between 2012 to 2016. The tower measured point albedos are then upscaled to coarse-resolution albedos, based on atmospherically corrected BRFs from high-resolution Earth observation (HR-EO) data, alongside MODIS BRDF climatology from a larger area. Then a pixel-to-pixel comparison is performed between DHR and BHR retrieved from coarse-resolution satellite observations and DHR and BHR upscaled from accurate tower measurements. The experimental results are presented on exploring the parameter space associated with land cover type, heterogeneous vs. homogeneous and instantaneous vs. time composite retrievals of surface albedo
Can We Use Satellite-Based FAPAR to Detect Drought?
Drought in Australia has widespread impacts on agriculture and ecosystems. Satellite-based Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) has great potential to monitor and assess drought impacts on vegetation greenness and health. Various FAPAR products based on satellite observations have been generated and made available to the public. However, differences remain among these datasets due to different retrieval methodologies and assumptions. The Quality Assurance for Essential Climate Variables (QA4ECV) project recently developed a quality assurance framework to provide understandable and traceable quality information for Essential Climate Variables (ECVs). The QA4ECV FAPAR is one of these ECVs. The aim of this study is to investigate the capability of QA4ECV FAPAR for drought monitoring in Australia. Through spatial and temporal comparison and correlation analysis with widely used Moderate Resolution Imaging Spectroradiometer (MODIS), Satellite Pour l'Observation de la Terre (SPOT)/PROBA-V FAPAR generated by Copernicus Global Land Service (CGLS), and the Standardized Precipitation Evapotranspiration Index (SPEI) drought index, as well as the European Space Agency's Climate Change Initiative (ESA CCI) soil moisture, the study shows that the QA4ECV FAPAR can support agricultural drought monitoring and assessment in Australia. The traceable and reliable uncertainties associated with the QA4ECV FAPAR provide valuable information for applications that use the QA4ECV FAPAR dataset in the future
EVALUATION OF THE MAIN CEOS PSEUDO CALIBRATION SITES USING MODIS BRDF/ALBEDO PRODUCTS
This work describes our findings about an evaluation of the stability and the consistency of twenty primary PICSs (Pseudo-Invariant
Calibration Sites). We present an analysis of 13 years of 8-daily MODIS products of BRDF parameters and white-sky-albedos
(WSA) over the shortwave band. This time series of WSA and BRDFs shows the variation of the “stability” varies significantly from
site to site. Using a 10x10 km window size over all the sites, the change in of WSA stability is around 4% but the isotropicity, which
is an important element in inter-satellite calibration, can vary from 75% to 98%. Moreover, some PICS, especially, Libya-4 which is
one of the PICS which is most employed, has significant and relatively fast changes in wintertime. PICS observations of
BRDF/albedo shows that the Libya-4 PICS has the best performance but it is not too far from some sites such as Libya-1 and Mali.
This study also reveals that Niger-3 PICS has the longest continuous period of high stability per year, and Sudan has the most
isotropic surface. These observations have important implications for the use of these sites
Influences of leaf area index and albedo on estimating energy fluxes with HOLAPS framework
The High resOlution Land Atmosphere surface Parameters from Space (HOLAPS) programme provides a modeling system to maximize the use of satellite-based products and ensure internally consistent estimation of surface water and energy fluxes. Leaf area index (LAI) and land surface albedo are two key parameters for estimation of latent and sensible heat fluxes with HOLAPS. Thus, to facilitate the generation of long-term high accuracy latent and sensible heat fluxes, high quality global long-term LAI and land surface albedo datasets are essential. The Quality Assurance for Essential Climate Variables (QA4ECV) project released quality-assured long-term LAI and albedo datasets with traceable and reliable uncertainty information provided in the dataset. Taking MODIS-BNU-LAI and MODIS albedo as reference, different global long-term LAI and albedo datasets including GlobAlbedo, QA4ECV and GLOBMAP were investigated for estimation of latent/sensible heat fluxes with HOLAPS in this study. The results show that all albedo datasets show similar accuracy for estimation of latent and sensible heat fluxes when validated against FLUXNET observations. The QA4ECV LAI leads to worse latent heat flux estimation due to its use of effective LAI rather than green leaf LAI. Sensitivity analysis also shows that the HOLAPS estimated latent heat flux (LE) is more sensitive to uncertainty in LAI than land surface albedo. Overall, the combined use of QA4ECV albedo and GLOBMAP LAI is suggested for estimation of latent/sensible heat fluxes with HOLAPS. The root mean square differences (RMSD) between estimations and FLUXNET measurements are 54 (30) W/m2 for hourly (monthly) latent heat flux, and 80.5 (24.5) W/m2 for sensible heat flux, which are comparable to estimates with MODIS and other reported studies
Influences of leaf area index and albedo on estimating energy fluxes with HOLAPS framework
The High resOlution Land Atmosphere surface Parameters from Space (HOLAPS) programme provides a modeling system to maximize the use of satellite-based products and ensure internally consistent estimation of surface water and energy fluxes. Leaf area index (LAI) and land surface albedo are two key parameters for estimation of latent and sensible heat fluxes with HOLAPS. Thus, to facilitate the generation of long-term high accuracy latent and sensible heat fluxes, high quality global long-term LAI and land surface albedo datasets are essential. The Quality Assurance for Essential Climate Variables (QA4ECV) project released quality-assured long-term LAI and albedo datasets with traceable and reliable uncertainty information provided in the dataset. Taking MODIS-BNU-LAI and MODIS albedo as reference, different global long-term LAI and albedo datasets including GlobAlbedo, QA4ECV and GLOBMAP were investigated for estimation of latent/sensible heat fluxes with HOLAPS in this study. The results show that all albedo datasets show similar accuracy for estimation of latent and sensible heat fluxes when validated against FLUXNET observations. The QA4ECV LAI leads to worse latent heat flux estimation due to its use of effective LAI rather than green leaf LAI. Sensitivity analysis also shows that the HOLAPS estimated latent heat flux (LE) is more sensitive to uncertainty in LAI than land surface albedo. Overall, the combined use of QA4ECV albedo and GLOBMAP LAI is suggested for estimation of latent/sensible heat fluxes with HOLAPS. The root mean square differences (RMSD) between estimations and FLUXNET measurements are 54 (30) W/m2 for hourly (monthly) latent heat flux, and 80.5 (24.5) W/m2 for sensible heat flux, which are comparable to estimates with MODIS and other reported studies
A new global fAPAR and LAI dataset derived from optimal Albedo estimates: Comparison with MODIS products
We present the first comparison between new fAPAR and LAI products derived from the GlobAlbedo dataset and the widely-used MODIS fAPAR and LAI products. The GlobAlbedo-derived products are produced using a 1D two-stream radiative transfer (RT) scheme designed explicitly for global parameter retrieval from albedo, with consistency between RT model assumptions and observations, as well as with typical large-scale land surface model RT schemes. The approach does not require biome-specific structural assumptions (e.g., cover, clumping, understory), unlike more detailed 3D RT model approaches. GlobAlbedo-derived values of fAPAR and LAI are compared with MODIS values over 2002–2011 at multiple flux tower sites within selected biomes, over 1200 × 1200 km regions and globally. GlobAlbedo-derived fAPAR and LAI values are temporally more stable than the MODIS values due to the smoothness of the underlying albedo, derived via optimal estimation (assimilation) using an a priori estimate of albedo derived from an albedo “climatology” (composited multi-year albedo observations). Parameters agree closely in timing but with GlobAlbedo values consistently lower than MODIS, particularly for LAI. Larger differences occur in winter (when values are lower) and in the Southern hemisphere. Globally, we find that: GlobAlbedo-derived fAPAR is ~0.9–1.01 × MODIS fAPAR with an intercept of ~0.03; GlobAlbedo-derived LAI is ~0.6 × MODIS LAI with an intercept of ~0.2. Differences arise due to the RT model assumptions underlying the products, meaning care is required in interpreting either set of values, particularly when comparing to fine-scale ground-based estimates. We present global transformations between GlobAlbedo-derived and MODIS products