6 research outputs found

    Cyclic Fatigue, Torsional Resistance, and Angular Deflection of Two Heat-Treated Files: M-Wire Versus New F-Wire Technology

    Get PDF
    The cyclic fatigue, torsional resistance, and angular deflection of a new Fire-Wire rotary file (CricENDO) were compared. A total of 20 files of each type were tested. Cyclic fatigue testing was performed for each group (n = 10) by measuring the number of cycles to fracture (NCF) in an artificial stainless-steel canal (60° angle of curvature, with a 6-mm radius) for each group. The torque and angle of rotation at the failure of each group (n = 10) were measured according to ISO 3630-1. The fractured surfaces were examined using scanning electron microscopy. Statistical analysis was carried out utilizing Student's t-test at a significance level set at 5%. The Fire-Wire CricENDO rotary files were associated with a significantly higher number of cycles to fracture and time to failure (in seconds) compared to the M-Wire Protaper Next (p < 0.05). A significantly higher angular deflection to fracture was observed for CricENDO compared to Protaper Next (p < 0.05). The new Fire-Wire CricENDO rotary files exhibit higher cyclic fatigue resistance and angle of rotation to fracture than M-Wire Protaper Next. Without warning, file fracture may occur as a result of cyclic fatigue, torsional stress, or a combined effect of both. CricENDO rotary files may be an effective alternative in curved root canals as they exhibited elevated cyclic and torsional resistance. It will be helpful in eliminating one of the reasons for file fracture during the root canal treatment

    Pushout Bond Strength of Root Fillings after Irrigation of Root Canals Utilizing Sodium Hypochlorite, Chlorhexidine, and Homeopathic Mother Tincture (Arnica Montana)

    No full text
    The pushout bond strength of root fillings at radicular dentin was investigated employing NaOCl, CHX, and homoeopathic mother tincture (Arnica montana) as an irrigant. Sixty human permanent single-rooted extracted teeth were decoronated. The root canals were instrumented using Pro taper universal rotary system (Dentsply Tulsa Dental; Tulsa, Oklahoma) and were prepared up to F3 apical size. The roots were then randomly divided into three groups according to irrigation solution (n = 20) according to the final irrigation regimen: Group I: 3 mL 5.25% NaOCl followed by 3 mL Saline (control); Group II: 3 mL Arnica montana (10%, w/v) followed by 3 mL Saline; Group III: 3 mL CHX followed by 3 mL Saline. The canals were dried using paper points. The canals were coated with AH Plus sealer (Dentsply DeTey, Konstaz, Germany) with the aid of a Lentulo spiral (Dentsply DeTey, Konstaz, Germany) and obturated with #F3 gutta-percha. Each root was then horizontally sliced into three slices, labelled coronal, middle, and apical, each measuring 2 mm thick. Furthermore, at a crosshead speed of 2 mm/min, the test was carried out using the universal testing apparatus. The 5.25% NaOCl significantly decreased the bond strength of AH Plus to dentin. Both CHX and Arnica montana were capable of reversing the compromised pushout of AH Plus to NaOCl-treated dentin. After using NaOCl as an irrigant, the danger of diminished binding capacity of AH Plus to root canal walls arises. Final irrigation with Arnica montana and CHX reduces this risk

    “Preendodontic build up” an important aspect of endodontic treatment: Conspectus and proposal of classification

    No full text
    Present-day endodontic treatments make an effort to eliminate up microorganisms from the cavity while also removing bacteria, infected tissue, and dentin. Endodontists think about preendodontic restoration for the most effective rubber dam isolation and increased irrigation space before commencing root canal treatments. This procedure makes postendodontic restoration easier by preventing fractures in poor tooth structure. In addition, it facilitates effective interappointment execution, minimizing medication seepage, gingival ingrowth, and bacterial microleakage. The article evaluates and suggests an innovative preendodontic buildup categorization system that can help with treatment planning for teeth with numerous walls that are structurally damaged

    Scanning Electron Microscopy Analysis of the Intratubular Radicular Dentin Penetration of Calcium Hydroxide, Triple Antibiotic Paste, and Nitrofurantoin

    No full text
    The aim of this study is to assess and analyze the intratubular penetration of the intracanal medications nitrofurantoin (Nit), triple antibiotic paste (TAP), and calcium hydroxide (CH). Sixty freshly extracted single-rooted teeth were acquired and decoronated to a standard length of 15 mm. To prepare specimens up to size F3, rotary ProTaper instrumentation was employed. The prepared teeth were divided into three groups, each of which received one of the tested intracanal medicaments: Group I (calcium hydroxide), Group II (triple antibiotic paste), and Group III (nitrofurantoin). Using a size #30 Lentulo spiral, a freshly prepared therapeutic paste was placed into the canals, and the intracanal medicaments were allowed to set in the incubator at 100% humidity. The samples were subsequently sliced perpendicularly to their long axis using a precision saw and assessed under a scanning electron microscope to assess the depth of penetration of intracanal medicaments at the coronal, middle, and apical portions of the root canal dentin. The data were analyzed using one-way ANOVA and Tukey’s post hoc test. The statistical analysis revealed a significant difference between the experimental groups in the quantity and depth of sealer penetration (p p < 0.05). In conclusion, this ongoing investigation indicates that nitrofurantoin penetrated dentinal tubules better than calcium hydroxide or triple antibiotic paste

    Pushout Bond Strength of Root Fillings after Irrigation of Root Canals Utilizing Sodium Hypochlorite, Chlorhexidine, and Homeopathic Mother Tincture (<i>Arnica Montana</i>)

    No full text
    The pushout bond strength of root fillings at radicular dentin was investigated employing NaOCl, CHX, and homoeopathic mother tincture (Arnica montana) as an irrigant. Sixty human permanent single-rooted extracted teeth were decoronated. The root canals were instrumented using Pro taper universal rotary system (Dentsply Tulsa Dental; Tulsa, Oklahoma) and were prepared up to F3 apical size. The roots were then randomly divided into three groups according to irrigation solution (n = 20) according to the final irrigation regimen: Group I: 3 mL 5.25% NaOCl followed by 3 mL Saline (control); Group II: 3 mL Arnica montana (10%, w/v) followed by 3 mL Saline; Group III: 3 mL CHX followed by 3 mL Saline. The canals were dried using paper points. The canals were coated with AH Plus sealer (Dentsply DeTey, Konstaz, Germany) with the aid of a Lentulo spiral (Dentsply DeTey, Konstaz, Germany) and obturated with #F3 gutta-percha. Each root was then horizontally sliced into three slices, labelled coronal, middle, and apical, each measuring 2 mm thick. Furthermore, at a crosshead speed of 2 mm/min, the test was carried out using the universal testing apparatus. The 5.25% NaOCl significantly decreased the bond strength of AH Plus to dentin. Both CHX and Arnica montana were capable of reversing the compromised pushout of AH Plus to NaOCl-treated dentin. After using NaOCl as an irrigant, the danger of diminished binding capacity of AH Plus to root canal walls arises. Final irrigation with Arnica montana and CHX reduces this risk

    Cyclic Fatigue, Torsional Resistance, and Angular Deflection of Two Heat-Treated Files: M-Wire Versus New F-Wire Technology

    No full text
    The cyclic fatigue, torsional resistance, and angular deflection of a new Fire-Wire rotary file (CricENDO) were compared. A total of 20 files of each type were tested. Cyclic fatigue testing was performed for each group (n = 10) by measuring the number of cycles to fracture (NCF) in an artificial stainless-steel canal (60&deg; angle of curvature, with a 6-mm radius) for each group. The torque and angle of rotation at the failure of each group (n = 10) were measured according to ISO 3630-1. The fractured surfaces were examined using scanning electron microscopy. Statistical analysis was carried out utilizing Student&rsquo;s t-test at a significance level set at 5%. The Fire-Wire CricENDO rotary files were associated with a significantly higher number of cycles to fracture and time to failure (in seconds) compared to the M-Wire Protaper Next (p &lt; 0.05). A significantly higher angular deflection to fracture was observed for CricENDO compared to Protaper Next (p &lt; 0.05). The new Fire-Wire CricENDO rotary files exhibit higher cyclic fatigue resistance and angle of rotation to fracture than M-Wire Protaper Next. Without warning, file fracture may occur as a result of cyclic fatigue, torsional stress, or a combined effect of both. CricENDO rotary files may be an effective alternative in curved root canals as they exhibited elevated cyclic and torsional resistance. It will be helpful in eliminating one of the reasons for file fracture during the root canal treatment
    corecore