3 research outputs found
Destruction and reinstatement of coastal hypoxia in the South China Sea off the Pearl River estuary
We examined the evolution of intermittent hypoxia off the Pearl River estuary based on three cruise legs conducted in July 2018: one during severe hypoxic conditions before the passage of a typhoon and two post-typhoon legs showing destruction of the hypoxia and its reinstatement. The lowest ever recorded regional dissolved oxygen (DO) concentration of 3.5 µmol kg−1 (∼ 0.1 mg L−1) was observed in bottom waters during leg 1, with an ∼ 660 km2 area experiencing hypoxic conditions (DO < 63 µmol kg−1). Hypoxia was completely destroyed by the typhoon passage but was quickly restored ∼ 6 d later, resulting primarily from high biochemical oxygen consumption in bottom waters that averaged 14.6 ± 4.8 µmol O2 kg−1 d−1. The shoreward intrusion of offshore subsurface waters contributed to an additional 8.6 ± 1.7 % of oxygen loss during the reinstatement of hypoxia. Freshwater inputs suppressed wind-driven turbulent mixing, stabilizing the water column and facilitating the hypoxia formation. The rapid reinstatement of summer hypoxia has a shorter timescale than the water residence time, which is however comparable with that of its initial disturbance from frequent tropical cyclones that occur throughout the wet season. This has important implications for better understanding the intermittent nature of hypoxia and predicting coastal hypoxia in a changing climate.ISSN:1726-4170ISSN:1726-417
The data set of dissolved oxygen concentrations in the South China Sea off the Pearl River Estuary in July 2018
We examined the evolution of intermittent hypoxia off the Pearl River Estuary based on three cruise legs conducted in July 2018: one during severe hypoxic conditions before the passage of a typhoon and two post-typhoon legs showing destruction of the hypoxia and its reinstatement. The lowest ever recorded regional dissolved oxygen (DO) concentration of 3.5 μmol kg-1 (~ 0.1 mg L-1) was observed in bottom waters during Leg 1, with a ~ 660 km2 area experiencing hypoxic conditions (DO < 63 μmol kg-1). Hypoxia was completely destroyed by the typhoon passage but was quickly restored ~ 6 days later, resulting primarily from high biochemical oxygen consumption in bottom waters that averaged 14.6±4.8 μmol O2 kg-1 d-1. The shoreward intrusion of offshore subsurface waters contributed to an additional 8.6±1.7 % of oxygen loss during the reinstatement of hypoxia. Freshwater inputs suppressed wind-driven turbulent mixing, stabilizing the water column and facilitating the hypoxia formation. The rapid reinstatement of summer hypoxia has a shorter timescale than the water residence time, which is however comparable with that of its initial disturbance from frequent tropical cyclones that occur throughout the wet season. This has important implications towards better understanding the intermittent nature of hypoxia and predicting coastal hypoxia in a changing climate
Persistent eutrophication and hypoxia in the coastal ocean
Coastal eutrophication and hypoxia remain a persistent environmental crisis despite the great efforts to reduce nutrient loading and mitigate associated environmental damages. Symptoms of this crisis have appeared to spread rapidly, reaching developing countries in Asia with emergences in Southern America and Africa. The pace of changes and the underlying drivers remain not so clear. To address the gap, we review the up-to-date status and mechanisms of eutrophication and hypoxia in global coastal oceans, upon which we examine the trajectories of changes over the 40 years or longer in six model coastal systems with varying socio-economic development statuses and different levels and histories of eutrophication. Although these coastal systems share common features of eutrophication, site-specific characteristics are also substantial, depending on the regional environmental setting and level of social-economic development along with policy implementation and management. Nevertheless, ecosystem recovery generally needs greater reduction in pressures compared to that initiated degradation and becomes less feasible to achieve past norms with a longer time anthropogenic pressures on the ecosystems. While the qualitative causality between drivers and consequences is well established, quantitative attribution of these drivers to eutrophication and hypoxia remains difficult especially when we consider the social economic drivers because the changes in coastal ecosystems are subject to multiple influences and the cause–effect relationship is often non-linear. Such relationships are further complicated by climate changes that have been accelerating over the past few decades. The knowledge gaps that limit our quantitative and mechanistic understanding of the human-coastal ocean nexus are identified, which is essential for science-based policy making. Recognizing lessons from past management practices, we advocate for a better, more efficient indexing system of coastal eutrophication and an advanced regional earth system modeling framework with optimal modules of human dimensions to facilitate the development and evaluation of effective policy and restoration actions