13 research outputs found

    Stochastic flowering phenology in Dactylis Glomerata populations described by Markov chain modelling

    Get PDF
    Understanding the relationship between flowering patterns and pollen dispersal is important in climate change modelling, pollen forecasting, forestry and agriculture. Enhanced understanding of this connection can be gained through detailed spatial and temporal flowering observations on a population level, combined with modelling simulating the dynamics. Species with large distribution ranges, long flowering seasons, high pollen production and naturally large populations can be used to illustrate these dynamics. Revealing and simulating species-specific demographic and stochastic elements in the flowering process will likely be important in determining when pollen release is likely to happen in flowering plants. Spatial and temporal dynamics of eight populations of Dactylis glomerata were collected over the course of two years to determine high-resolution demographic elements. Stochastic elements were accounted for using Markov Chain approaches in order to evaluate tiller-specific contribution to overall population dynamics. Tiller-specific developmental dynamics were evaluated using three different RV matrix correlation coefficients. We found that the demographic patterns in population development were the same for all populations with key phenological events differing only by a few days over the course of the seasons. Many tillers transitioned very quickly from non-flowering to full flowering, a process that can be replicated with Markov Chain modelling. Our novel approach demonstrates the identification and quantification of stochastic elements in the flowering process of D. glomerata, an element likely to be found in many flowering plants. The stochastic modelling approach can be used to develop detailed pollen release models for Dactylis, other grass species and probably other flowering plants

    Temporal variation overshadows the response of leaf litter microbial communities to simulated global change

    No full text
    Bacteria and fungi drive the decomposition of dead plant biomass (litter), an important step in the terrestrial carbon cycle. Here we investigate the sensitivity of litter microbial communities to simulated global change (drought and nitrogen addition) in a California annual grassland. Using 16S and 28S rDNA amplicon pyrosequencing, we quantify the response of the bacterial and fungal communities to the treatments and compare these results to background, temporal (seasonal and interannual) variability of the communities. We found that the drought and nitrogen treatments both had significant effects on microbial community composition, explaining 2–6% of total compositional variation. However, microbial composition was even more strongly influenced by seasonal and annual variation (explaining 14–39%). The response of microbial composition to drought varied by season, while the effect of the nitrogen addition treatment was constant through time. These compositional responses were similar in magnitude to those seen in microbial enzyme activities and the surrounding plant community, but did not correspond to a consistent effect on leaf litter decomposition rate. Overall, these patterns indicate that, in this ecosystem, temporal variability in the composition of leaf litter microorganisms largely surpasses that expected in a short-term global change experiment. Thus, as for plant communities, future microbial communities will likely be determined by the interplay between rapid, local background variability and slower, global changes
    corecore