981 research outputs found

    A case series of percutaneous tension band wiring technique for fixation of fractures of olecranon and patella

    Get PDF
    There are several advantages in the treatment of fractures by means of closed reduction. Percutaneous fixation is a type of biological fixation. The aim and objectives of this study are to demonstrate the technique of percutaneous tension band wiring in cases of transverse, non- comminuted olecranon and patella fractures and to decrease the soft tissue dissection, blood loss, chances of infection and to ensure speedy mobilization using the innovative percutaneous fixation technique. This retrospective study includes ten patients of olecranon and ten patients of patella operated by the same surgeon. All patients were operated with percutaneous tension band wiring for olecranon and patella. There were six males and four females with olecranon fractures. There were seven males and three females who suffered patella fractures. The average duration of surgery was 55 minutes and average follow up was 24±6 weeks. The suture removal was done at 2 weeks. All patients had full range of movements at six weeks with significantly improved DASH score and Oxford knee score. None of the patients had any complications. Percutaneous fixation decreases the chances of bleeding secondary to unnecessary soft tissue dissection, thereby decreasing the post-operative morbidity. It also, convincingly, decreases the chances of post-operative infection and promotes early mobilization. Closed reduction with percutaneous fixation is believed to be an innovative, safe, reliable and efficient method of managing these difficult fractures

    Transport methods and interactions for space radiations

    Get PDF
    A review of the program in space radiation protection at the Langley Research Center is given. The relevant Boltzmann equations are given with a discussion of approximation procedures for space applications. The interaction coefficients are related to solution of the many-body Schroedinger equation with nuclear and electromagnetic forces. Various solution techniques are discussed to obtain relevant interaction cross sections with extensive comparison with experiments. Solution techniques for the Boltzmann equations are discussed in detail. Transport computer code validation is discussed through analytical benchmarking, comparison with other codes, comparison with laboratory experiments and measurements in space. Applications to lunar and Mars missions are discussed

    Cytotoxic Effect of Poly-Dispersed Single Walled Carbon Nanotubes on Erythrocytes In Vitro and In Vivo

    Get PDF
    Single wall Carbon Nanotubes (SWCNTs) are hydrophobic and do not disperse in aqueous solvents. Acid functionalization of SWCNTs results in attachment of carboxy and sulfonate groups to carbon atoms and the resulting acid functionalized product (AF-SWCNTs) is negatively charged and disperses easily in water and buffers. In the present study, effect of AF-SWCNTs on blood erythrocytes was examined. Incubation of mouse erythrocytes with AF-SWCNTs and not with control SWCNTs, resulted in a dose and time dependent lysis of erythrocyte. Using fluorescence tagged AF-SWCNTs, binding of AF-SWCNTs with erythrocytes could be demonstrated. Confocal microscopy results indicated that AF-SWCNTs could enter the erythrocytes. Treatment with AF-SWCNTs resulted in exposure of hydrophobic patches on erythrocyte membrane that is indicative of membrane damage. A time and dose dependent increase in externalization of phosphatidylserine on erythrocyte membrane bilayer was also found. Administration of AF-SWCNTs through intravenous route resulted in a transient anemia as seen by a sharp decline in blood erythrocyte count accompanied with a significant drop in blood haemoglobin level. Administration of AF-SWCNTs through intratracheal administration also showed significant decline in RBC count while administration through other routes (gavage and intra-peritoneal) was not effective. By using a recently developed technique of a two step in vivo biotinylation of erythrocytes that enables simultaneous enumeration of young (age <10 days) and old (age>40 days) erythrocytes in mouse blood, it was found that the in vivo toxic effect of AF-SWCNTs was more pronounced on older subpopulation of erythrocytes. Subpopulation of old erythrocytes fell after treatment with AF-SWCNTs but recovered by third day after the intravenous administration of AF-SWCNTs. Taken together our results indicate that treatment with AF-SWCNTs results in acute membrane damage and eventual lysis of erythrocytes. Intravenous administration of AF-SWCNTs resulted in a transient anemia in which older erythrocytes are preferably lysed

    Spectroscopic Evidence for the Localization of Skyrmions near Nu=1 as T->0

    Full text link
    Optically pumped nuclear magnetic resonance measurements of Ga-71 spectra were carried out in an n-doped GaAs/Al0.1Ga0.9As multiple quantum well sample near the integer quantum Hall ground state Nu=1. As the temperature is lowered (down to T~0.3 K), a ``tilted plateau'' emerges in the Knight shift data, which is a novel experimental signature of quasiparticle localization. The dependence of the spectra on both T and Nu suggests that the localization is a collective process. The frozen limit spectra appear to rule out a 2D lattice of conventional skyrmions.Comment: 4 pages (REVTEX), 5 eps figures embedded in text, published versio

    Toolbox for Discovering Dynamic System Relations via TAG Guided Genetic Programming

    Get PDF
    Data-driven modeling of nonlinear dynamical systems often require an expert user to take critical decisions a priori to the identification procedure. Recently an automated strategy for data driven modeling of \textit{single-input single-output} (SISO) nonlinear dynamical systems based on \textit{Genetic Programming} (GP) and \textit{Tree Adjoining Grammars} (TAG) has been introduced. The current paper extends these latest findings by proposing a \textit{multi-input multi-output} (MIMO) TAG modeling framework for polynomial NARMAX models. Moreover we introduce a TAG identification toolbox in Matlab that provides implementation of the proposed methodology to solve multi-input multi-output identification problems under NARMAX noise assumption. The capabilities of the toolbox and the modelling methodology are demonstrated in the identification of two SISO and one MIMO nonlinear dynamical benchmark models

    Observation of a new phase transition between fully and partially polarized quantum Hall states with charge and spin gaps at ν=2/3\nu = 2/3

    Full text link
    The average electron spin-polarization P\cal P of two-dimensional electron gas confined in GaAs/GaAlAs\rm GaAs/GaAlAs multiple quantum-wells was measured by nuclear magnetic resonance (NMR) near the fractional quantum Hall state with filling factor ν=2/3\nu={2/3}. Above this filling factor (2/3ν<0.85{{2/3}} \leq \nu < 0.85), a strong depolarization is observed corresponding to two spin flips per additional flux quantum. The most remarkable behavior of the polarization is observed at ν=2/3\nu ={{2/3}}, where a quantum phase transition from a partially polarized (P3/4{\cal P} \approx {{3/4}}) to a fully polarized (P=1{\cal P} = 1) state can be driven by increasing the ratio between the Zeeman and the Coulomb energy above a critical value ηc=ΔZΔC=0.0185\eta_{c} = \frac{\Delta_{Z}}{\Delta_{C}} = 0.0185.Comment: 4 pages including 4 figure

    Assessment of physician well-being, part two: Beyond burnout

    Get PDF
    © 2019 Lall et al. Part One of this two-article series reviews assessment tools to measure burnout and other negative states. Physician well-being goes beyond merely the absence of burnout. Transient episodes of burnout are to be expected. Measuring burnout alone is shortsighted. Well-being includes being challenged, thriving, and achieving success in various aspects of personal and professional life. In this second part of the series, we identify and describe assessment tools related to wellness, quality of life, resilience, coping skills, and other positive states

    Physics of the Insulating Phase in the Dilute Two-Dimensional Electron Gas

    Full text link
    We propose to use the radio-frequency single-electron transistor as an extremely sensitive probe to detect the time-periodic ac signal generated by sliding electron lattice in the insulating state of the dilute two-dimensional electron gas. We also propose to use the optically-pumped NMR technique to probe the electron spin structure of the insulating state. We show that the electron effective mass and spin susceptibility are strongly enhanced by critical fluctuations of electron lattice in the vicinity of the metal-insulator transition, as observed in experiment.Comment: 5 pages, 2 figures, uses jetpl.cls (included). v.4: After publication in JETP Letters, two plots comparing theory and experiment are added, and a minor error is correcte

    Skyrmion Dynamics and NMR Line Shapes in QHE Ferromagnets

    Full text link
    The low energy charged excitations in quantum Hall ferromagnets are topological defects in the spin orientation known as skyrmions. Recent experimental studies on nuclear magnetic resonance spectral line shapes in quantum well heterostructures show a transition from a motionally narrowed to a broader `frozen' line shape as the temperature is lowered at fixed filling factor. We present a skyrmion diffusion model that describes the experimental observations qualitatively and shows a time scale of 50μsec\sim 50 \mu{\rm sec} for the transport relaxation time of the skyrmions. The transition is characterized by an intermediate time regime that we demonstrate is weakly sensitive to the dynamics of the charged spin texture excitations and the sub-band electronic wave functions within our model. We also show that the spectral line shape is very sensitive to the nuclear polarization profile along the z-axis obtained through the optical pumping technique.Comment: 6 pages, 4 figure

    Temperature dependence of spin polarizations at higher Landau Levels

    Full text link
    We report our results on temperature dependence of spin polarizations at ν=1\nu=1 in the lowest as well as in the next higher Landau level that compare well with recent experimental results. At ν=3\nu=3, except having a much smaller magnitude the behavior of spin polarization is not much influenced by higher Landau levels. In sharp contrast, for filling factor ν=83\nu=\frac83 we predict that unlike the case of ν=23\nu=\frac23 the system remains fully spin polarized even at vanishingly small Zeeman energies.Comment: 4 pages, REVTEX, and 3 .ps files, To be published in Physical Review Letter
    corecore