4 research outputs found

    Acetogenic Pretreatment as an Energy Efficient Method for Treatment of Textile Processing Wastewater

    Get PDF
    This chapter will introduce the concept of a novel application of acetogenic pretreatment of textile processing wastewater. Acetogenic pretreatment is traditionally limited to high solids, easy to degrade wastewater to enhance degradation for methane generation. The application of the acetogenic process to a complex wastewater from textile processing facilities is novel and has the potential to remove color, chemical oxygen demand, biological oxygen demand in an energy efficient manner compared to the existing extended aeration processes applied in the industry. The application of the acetogenic process can be achieved to existing treatment facilities with minimum retrofit. The acetogenic operation will ensure the treatment process becoming greener with a small carbon footprint to achieve the goal of efficient wastewater treatment

    Preclinical Evaluation of the Safety and Efficacy of Cryopreserved Bone Marrow Mesenchymal Stromal Cells for Corneal Repair

    No full text
    PurposeMesenchymal stromal cells (MSCs) have been shown to enhance tissue repair as a cell-based therapy. In preparation for a phase I clinical study, we evaluated the safety, dosing, and efficacy of bone marrow-derived MSCs after subconjunctival injection in preclinical animal models of mice, rats, and rabbits.MethodsHuman bone marrow-derived MSCs were expanded to passage 4 and cryopreserved. Viability of MSCs after thawing and injection through small-gauge needles was evaluated by vital dye staining. The in vivo safety of human and rabbit MSCs was studied by subconjunctivally injecting MSCs in rabbits with follow-up to 90 days. The potency of MSCs on accelerating wound healing was evaluated in vitro using a scratch assay and in vivo using 2-mm corneal epithelial debridement wounds in mice. Human MSCs were tracked after subconjunctival injection in rat and rabbit eyes.ResultsThe viability of MSCs after thawing and immediate injection through 27- and 30-gauge needles was 93.1% ± 2.1% and 94.9% ± 1.3%, respectively. Rabbit eyes demonstrated mild self-limiting conjunctival inflammation at the site of injection with human but not rabbit MSCs. In scratch assay, the mean wound healing area was 93.5% ± 12.1% in epithelial cells co-cultured with MSCs compared with 40.8% ± 23.1% in controls. At 24 hours after wounding, all MSC-injected murine eyes had 100% corneal wound closure compared with 79.9% ± 5.5% in controls. Human MSCs were detectable in the subconjunctival area and peripheral cornea at 14 days after injection.ConclusionsSubconjunctival administration of MSCs is safe and effective in promoting corneal epithelial wound healing in animal models.Translational relevanceThese results provide preclinical data to support a phase I clinical study
    corecore