4 research outputs found

    Evaluation of a novel real-time polymerase chain reaction assay for identifying H3 equine influenza virus in Kazakhstan

    Get PDF
    Background and Aim: Equine influenza (EI) is a highly contagious disease that causes fever and upper respiratory tract inflammation. It is caused by influenza virus A, belonging to the Orthomyxoviridae family, with subtypes H3N8 and H7N7. This study presents data on the development of a real-time polymerase chain reaction (RT-PCR) assay using TaqMan probes to detect the H3 subtype of EI virus (EIV). Materials and Methods: The evaluation of the developed RT-PCR assay involved five strains of EIV as positive controls and ten nasopharyngeal swab samples collected from horses. RNA was isolated using the GeneJet Viral DNA and RNA Purification Kit, and primers and probes were designed using the Integrated DNA Technology PrimerQuest Tool. The assay was optimized by investigating the annealing temperature, primer and probes concentrations, sensitivity, and specificity. Sequencing was performed using the Thermo Fisher 3130 Genetic Analyzer, and the evolutionary history was inferred using the Neighbor-Joining method. Results: The designed primers and probes, targeting the H3 gene, were found to be specific to the EIV. The RT-PCR assay was capable of detecting as low as 50 femtogram (f) or 3 × 103 copies of genomic RNA. No cross-reactions were observed with other respiratory viral and bacterial pathogens, indicating the high specificity of the assay. To evaluate its effectiveness, ten nasopharyngeal swab samples collected from farms in North Kazakhstan regions during disease monitoring were analyzed. The accuracy of the analysis was confirmed by comparing the results with those obtained from a commercial RT-PCR assay for EI identification. The developed RT-PCR assay exhibited high sensitivity and specificity for detecting the EIV. Conclusion: The results demonstrate that the developed RT-PCR assay is suitable for diagnosing EI. This simple, highly sensitive, and specific assay for detecting H3 EIV can be a reliable tool for diagnosing and surveilling EI. Implementing this RT-PCR assay in veterinary practice will enhance and expedite the timely response to potential outbreaks of EI, thus positively impacting the overall epizootic well-being of EI in Kazakhstan

    Genetic characterization of a new candidate hemagglutinin subtype of influenza A viruses

    Get PDF
    Avian influenza viruses (AIV) have been classified on the basis of 16 subtypes of hemagglutinin (HA) and 9 subtypes of neuraminidase. Here we describe genomic evidence for a new candidate HA subtype, nominally H19, with a large genetic distance to all previously described AIV subtypes, derived from a cloacal swab sample of a Common Pochard (Aythya ferina) in Kazakhstan, in 2008. Avian influenza monitoring in wild birds especially in migratory hotspots such as central Asia is an important approach to gain information about the circulation of known and novel influenza viruses. Genetically, the novel HA coding sequence exhibits only 68.2% nucleotide and 68.5% amino acid identity with its nearest relation in the H9 (N2) subtype. The new HA sequence should be considered in current genomic diagnostic AI assays to facilitate its detection and eventual isolation enabling further study and antigenic classification

    Genetic characterization of a new candidate hemagglutinin subtype of influenza A viruses

    No full text
    Avian influenza viruses (AIV) have been classified on the basis of 16 subtypes of hemagglutinin (HA) and 9 subtypes of neuraminidase. Here we describe genomic evidence for a new candidate HA subtype, nominally H19, with a large genetic distance to all previously described AIV subtypes, derived from a cloacal swab sample of a Common Pochard (Aythya ferina) in Kazakhstan, in 2008. Avian influenza monitoring in wild birds especially in migratory hotspots such as central Asia is an important approach to gain information about the circulation of known and novel influenza viruses. Genetically, the novel HA coding sequence exhibits only 68.2% nucleotide and 68.5% amino acid identity with its nearest relation in the H9 (N2) subtype. The new HA sequence should be considered in current genomic diagnostic AI assays to facilitate its detection and eventual isolation enabling further study and antigenic classification
    corecore