8 research outputs found

    Putative second hit rare genetic variants in families with seemingly GBA-associated Parkinson's disease

    Get PDF
    Rare variants in the beta-glucocerebrosidase gene (GBA1) are common genetic risk factors for alpha synucleinopathy, which often manifests clinically as GBA-associated Parkinson's disease (GBA-PD). Clinically, GBA-PD closely mimics idiopathic PD, but it may present at a younger age and often aggregates in families. Most carriers of GBA variants are, however, asymptomatic. Moreover, symptomatic PD patients without GBA variant have been reported in families with seemingly GBA-PD. These observations obscure the link between GBA variants and PD pathogenesis and point towards a role for unidentified additional genetic and/or environmental risk factors or second hits in GBA-PD. In this study, we explored whether rare genetic variants may be additional risk factors for PD in two families segregating the PD-associated GBA1 variants c.115+1G>A (ClinVar ID: 93445) and p.L444P (ClinVar ID: 4288). Our analysis identified rare genetic variants of the HSP70 co-chaperone DnaJ homolog subfamily B member 6 (DNAJB6) and lysosomal protein prosaposin (PSAP) as additional factors possibly influencing PD risk in the two families. In comparison to the wild-type proteins, variant DNAJB6 and PSAP proteins show altered functions in the context of cellular alpha-synuclein homeostasis when expressed in reporter cells. Furthermore, the segregation pattern of the rare variants in the genes encoding DNAJB6 and PSAP indicated a possible association with PD in the respective families. The occurrence of second hits or additional PD cosegregating rare variants has important implications for genetic counseling in PD families with GBA1 variant carriers and for the selection of PD patients for GBA targeted treatments

    Segregation and potential functional impact of a rare stop-gain PABPC4L variant in familial atypical parkinsonism

    Get PDF
    Atypical parkinsonian disorders (APDs) comprise a group of neurodegenerative diseases with heterogeneous clinical and pathological features. Most APDs are sporadic, but rare familial forms have also been reported. Epidemiological and post-mortem studies associated APDs with oxidative stress and cellular protein aggregates. Identifying molecular mechanisms that translate stress into toxic protein aggregation and neurodegeneration in APDs is an active area of research. Recently, ribonucleic acid (RNA) stress granule (SG) pathways were discussed to be pathogenically relevant in several neurodegenerative disorders including APDs. Using whole genome sequencing, mRNA expression analysis, transfection assays and cell imaging, we investigated the genetic and molecular basis of a familial neurodegenerative atypical parkinsonian disorder. We investigated a family with six living members in two generations exhibiting clinical symptoms consistent with atypical parkinsonism. Two affected family members suffered from parkinsonism that was associated with ataxia. Magnetic resonance imaging (MRI) of these patients showed brainstem and cerebellar atrophy. Whole genome sequencing identified a heterozygous stop-gain variant (c.C811T; p.R271X) in the Poly(A) binding protein, cytoplasmic 4-like (PABPC4L) gene, which co-segregated with the disease in the family. In situ hybridization showed that the murine pabpc4l is expressed in several brain regions and in particular in the cerebellum and brainstem. To determine the functional impact of the stop-gain variant in the PABPC4L gene, we investigated the subcellular localization of PABPC4L in heterologous cells. Wild-type PABPC4L protein localized predominantly to the cell nucleus, in contrast to the truncated protein encoded by the stop-gain variant p.R271X, which was found homogeneously throughout the cell. Interestingly, the wild-type, but not the truncated protein localized to RasGAP SH3 domain Binding Protein (G3BP)-labeled cytoplasmic granules in response to oxidative stress induction. This suggests that the PABPC4L variant alters intracellular distribution and possibly the stress granule associated function of the protein, which may underlie APD in this family. In conclusion, we present genetic and molecular evidence supporting the role of a stop-gain PABPC4L variant in a rare familial APD. Our data shows that the variant results in cellular mislocalization and inability of the protein to associate with stress granules

    Further evidence for the association of CYP2D6*4 gene polymorphism with Parkinson’s disease: a case control study

    No full text
    Abstract Background Genetic and environmental risk factors play an important role for the susceptibility to sporadic Parkinson’s disease (PD). It was hypothesized that a splice variant of the CYP2D6 gene (CYP2D6*4 allele) is associated with PD because it alters the ability to metabolize toxins and in particular neurotoxins. CYP2D6 codes for the drug metabolizing enzyme debrisoquine 4-hydroxylase. The CYP2D6*4 variant results in an undetectable enzyme activity and consequently in a reduction in metabolism of some toxins. Methods Some of agricultural chemicals have neurotoxic potential and CYP2D6 is involved in their detoxification. Thus, we conducted a case control study to investigate the association of the CYP2D6*4 with PD in a Pakistani subpopulation that is known to be exposed to high levels of some agricultural pesticides, insecticides and herbicides. Results We found a significantly higher allele and genotype frequency of the CYP2D6*4 variant in 174 sporadic PD patients when compared to 200 controls. In addition, there was a trend to an earlier age of PD onset and a tremor dominant phenotype in CYP2D6*4 variant carriers. Conclusion Our data provide further evidence that a poor metabolizer status may increase the risk to develop PD especially in populations that are exposed to environmental toxins

    A Recurrent Nonsense Mutation in NECTIN4 Underlying Ectodermal Dysplasia-Syndactyly Syndrome with a Novel Phenotype in a Consanguineous Kashmiri Family

    No full text
    EDSS1, a syndrome characterized by ectodermal dysplasia-syndactyly, is inherited in an autosomal recessive manner due to mutations in the NECTIN4/PVRL4 gene. Clinical manifestations of the syndrome include defective nail plate, sparse to absent scalp and body hair, spaced teeth with enamel hypoplasia, and bilateral cutaneous syndactyly in the fingers and toes. Here, we report a consanguineous family of Kashmiri origin presenting features of EDSS1. Using whole exome sequencing, we found a recurrent nonsense mutation (NM_030916: c.181C > T, p.(Gln61 ∗)) in the NECTIN4 gene. The variant segregated perfectly with the disorder within the family. The candidate variant was absent in 50 in-house exomes pertaining to other disorders from the same population. In addition to the previously reported clinical phenotype, an upper lip cleft was found in one of the affected members as a novel phenotype that is not reported by previous studies in EDSS1 patients. Therefore, the study presented here, which was conducted on the Kashmiri population, is the first to document a NECTIN4 mutation associated with the upper lip cleft as a novel phenotype. This finding broadens the molecular and phenotypic spectrum of EDSS1
    corecore