25 research outputs found

    Π’Π›Π˜Π―ΠΠ˜Π• Π˜ΠΠžΠšΠ£Π›Π―Π¦Π˜Π˜ Π‘Π•ΠœΠ―Π Π Π˜Π—ΠžΠΠ“Π Π˜ΠΠžΠœ НА ΠœΠ˜ΠšΠ ΠžΠ€Π›ΠžΠ Π£ Π Π˜Π—ΠžΠ‘Π€Π•Π Π« И Π£Π ΠžΠ–ΠΠ™ΠΠžΠ‘Π’Π¬ ΠžΠ—Π˜ΠœΠžΠ™ ΠŸΠ¨Π•ΠΠ˜Π¦Π« Π’ Π›Π•Π‘ΠžΠ‘Π’Π•ΠŸΠ˜ Π—ΠΠŸΠΠ”ΠΠžΠ™ Π‘Π˜Π‘Π˜Π Π˜

    Get PDF
    The researchers conduct the field stationary experiment with the use of mineral fertilizers and straw in the grain and steam crop rotation with the withdrawal field of alfalfa and study the number of microflora in the rhizosphere of winter wheat of the new variety Priirtyshskaya after treatment of seeds with biospecimen of complex effect - risoagrine. The highest number of useful crop groups of microorganisms was observed in the variant with inoculation of crop seeds by risoagrine on the basis of applying mineral fertilizers, as well as in combination of inoculation techniques, application of mineral fertilizers and straw (N15P23 + straw + inoculation), respectively, 444 and 355 million UU/yr with 217 million UU/yr in the control group. In the variant with inoculation of winter wheat seeds by mineral fertilizers (N15P23 + inoculation), the number ofoligonitrophils and bacteria, mineralizing mineral phosphates, increased by 2.2 times, nitrifiers - by 60%, microorganisms that utilize organic nitrogen compounds on MPA - by 39, consuming mineral nitrogen on CAA - by 73% compared to the control group. The celluloseolytic soil activity under winter wheat sowing in variants N15P23 + inoculation and N15P23 + straw + inoculation increased to 66.5-67.0%, exceeded the control group by 1.7 times. The highest increase in the crop’s grains was observed in the combination of mineral, organic (straw) and bacterial (rizoagrine) fertilizers - 40.3% in comparison with the control group. Additional nitrogen removal by winter wheat crop due to the activity of associative diazotrophs varied from 6 to 16.5 kg/ha. Correlative relations of high (r=0.84-0.91) and average (r=0.62-0.72) degree of microorganisms in the rhizosphere were observed among the indicators of crop yield and number of microorganisms. The closest correlation took place between the value of winter wheat grain yield and the number of bacteria growing on MPA, including ammonifiers, and the yield and number of nitrifying bacteria.Π’ ΠΏΠΎΠ»Π΅Π²ΠΎΠΌ стационарном ΠΎΠΏΡ‹Ρ‚Π΅ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ ΠΈ соломы Π² Π·Π΅Ρ€Π½ΠΎΠΏΠ°Ρ€ΠΎΠ²ΠΎΠΌ сСвооборотС с Π²Ρ‹Π²ΠΎΠ΄Π½Ρ‹ΠΌ ΠΏΠΎΠ»Π΅ΠΌ Π»ΡŽΡ†Π΅Ρ€Π½Ρ‹ исслСдована Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€Ρ‹ Π² ризосфСрС ΠΎΠ·ΠΈΠΌΠΎΠΉ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π½ΠΎΠ²ΠΎΠ³ΠΎ сорта ΠŸΡ€ΠΈΠΈΡ€Ρ‚Ρ‹ΡˆΡΠΊΠ°Ρ послС ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ сСмян Π±ΠΈΠΎΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠΌ комплСксного дСйствия – Ρ€ΠΈΠ·ΠΎΠ°Π³Ρ€ΠΈΠ½ΠΎΠΌ. НаиболСС высокая общая Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒ агрономичСски ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² установлСна Π² Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ с инокуляциСй сСмян ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ Ρ€ΠΈΠ·ΠΎΠ°Π³Ρ€ΠΈΠ½ΠΎΠΌ Π½Π° Ρ„ΠΎΠ½Π΅ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ сочСтании ΠΏΡ€ΠΈΠ΅ΠΌΠΎΠ² инокуляции, внСсСния ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ ΠΈ соломы (N15P23 + солома + инокуляция), соотвСтствСнно 444 ΠΈ 355 ΠΌΠ»Π½ ΠšΠžΠ•/Π³ ΠΏΡ€ΠΈ 217 ΠΌΠ»Π½ ΠšΠžΠ•/Π³ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅. Π’ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ с инокуляциСй сСмян ΠΎΠ·ΠΈΠΌΠΎΠΉ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π½Π° Ρ„ΠΎΠ½Π΅ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ (N15P23 + инокуляция) количСство ΠΎΠ»ΠΈΠ³ΠΎΠ½ΠΈΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ фосфаты, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ»ΠΎΡΡŒ Π² 2,2 Ρ€Π°Π·Π°, Π½ΠΈΡ‚Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ² – Π½Π° 60%, ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΡƒΡ‚ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… органичСскиС соСдинСния Π°Π·ΠΎΡ‚Π° Π½Π° МПА, – Π½Π° 39, ΠΏΠΎΡ‚Ρ€Π΅Π±Π»ΡΡŽΡ‰ΠΈΡ… ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π·ΠΎΡ‚ Π½Π° КАА – Π½Π° 73% Π² сравнСнии с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ. Π¦Π΅Π»Π»ΡŽΠ»ΠΎΠ·ΠΎΠ»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‡Π²Ρ‹ ΠΏΠΎΠ΄ посСвом ΠΎΠ·ΠΈΠΌΠΎΠΉ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π² Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°Ρ… N15P23 + инокуляция ΠΈ N15P23 + солома + инокуляция возросла Π΄ΠΎ 66,5–67,0%, прСвысив ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π² 1,7 Ρ€Π°Π·Π°. Наибольшая ΠΏΡ€ΠΈΠ±Π°Π²ΠΊΠ° Π·Π΅Ρ€Π½Π° ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ Π±Ρ‹Π»Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° ΠΏΡ€ΠΈ сочСтании ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ…, органичСского (соломы) ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ (Ρ€ΠΈΠ·ΠΎΠ°Π³Ρ€ΠΈΠ½) ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ – 40,3% ΠΊ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ. Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ вынос Π°Π·ΠΎΡ‚Π° ΡƒΡ€ΠΎΠΆΠ°Π΅ΠΌ ΠΎΠ·ΠΈΠΌΠΎΠΉ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π·Π° счСт Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ассоциативных Π΄ΠΈΠ°Π·ΠΎΡ‚Ρ€ΠΎΡ„ΠΎΠ² составил ΠΎΡ‚ 6 Π΄ΠΎ 16,5 ΠΊΠ³/Π³Π°. ΠœΠ΅ΠΆΠ΄Ρƒ показатСлями уроТайности ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΈ Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π² ризосфСрС установлСны коррСлятивныС зависимости сильной (r=0,84–0,91) ΠΈ срСднСй (r=0,62–0,72) стСпСни. НаиболСС тСсная связь ΠΈΠΌΠ΅Π»Π° мСсто ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ уроТайности Π·Π΅Ρ€Π½Π° ΠΎΠ·ΠΈΠΌΠΎΠΉ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΈ количСством Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, растущих Π½Π° МПА, Π² Ρ‚.Ρ‡. Π°ΠΌΠΌΠΎΠ½ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π½ΠΈΡ‚Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ

    Anomalous Asymptotic of Small-Angle Neutron Scattering Intensity

    No full text

    A sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO4

    No full text
    The transparent titanium-zirconium-containing gel was obtained using heteroligand coordination compounds (namely, alkoxoacetylacetonates) as the precursors. The high-dispersive system β€œZrTiO4 – carbon” formed after drying of such gel and carbonization of the obtained xerogel, was used to study the evolution of microstructure for the product (ZrTiO4) during thermal treatment in air for 1 h in the temperature range from 500 Β°C to 1000Β°Π‘. It was stated that the formation of crystalline phase occurred in the narrow range 690-730Β°Π‘. The thermal treatment at 500 Β°C and 600Β°Π‘ allowed obtaining micro- and mesoporous X-ray amorphous products of the composition ZrTiO4, with the specific surface area falling in the range 82–150 m2/g. At the higher temperatures the single-phase nanocrystalline powder was prepared (the specific surface area amounted to 2.5–15 m2/g). Particle coarsening took place more extensively at temperatures β‰₯700Β°Π‘ was shown. For the ZrTiO4 nanopowder crystallized under the mildest conditions at the temperature of 700 Β°C, chemoresistive gas-sensitive properties were studied for the first time. The material showed a high reproducible response at 1–20% O2 and 200–10,000 ppm H2 at a relatively low detection operating temperature of 450 Β°C. Β© 2019 Elsevier B.V

    Synthesis of Iron Oxide Magnetic Nanoparticles and Their Effect on Growth, Productivity, and Quality of Tomato

    No full text
    The influence of the structure, phase composition, textural and colloidal properties of magnetic iron oxides nanoparticles in the form of aqueous suspensions with a concentration of 0.001 and 0.01 mg/L on the growth, productivity of tomatoes and quality of its fruits after their foliar processing was shown. It was found that the maximum positive effect was observed during foliar treatment of tomato plants with aqueous suspensions of iron oxide samples with specific surface area (~52 and ~75 m2/g), two-level hierarchical structure, hydrodynamic diameters (~150 and ~180 nm) in stable aqueous suspensions (the absolute value of the ΞΆ-potential is β‰ˆ 30 mV)

    A sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO4

    No full text
    The transparent titanium-zirconium-containing gel was obtained using heteroligand coordination compounds (namely, alkoxoacetylacetonates) as the precursors. The high-dispersive system β€œZrTiO4 – carbon”, formed after drying of such gel and carbonization of the obtained xerogel, was used to study the evolution of microstructure for the product (ZrTiO4) during thermal treatment in air for 1 h in the temperature range from 500 Β°C to 1000Β°Π‘. It was stated that the formation of crystalline phase occurred in the narrow range 690-730Β°Π‘. The thermal treatment at 500 Β°C and 600Β°Π‘ allowed obtaining micro- and mesoporous X-ray amorphous products of the composition ZrTiO4, with the specific surface area falling in the range 82–150m2/g. At the higher temperatures the single-phase nanocrystalline powder was prepared (the specific surface area amounted to 2.5–15m2/g). Particle coarsening took place more extensively at temperatures β‰₯700Β°Π‘ was shown. For the ZrTiO4 nanopowder crystallized under the mildest conditions at the temperature of 700 Β°C, chemoresistive gas-sensitive properties were studied for the first time. The material showed a high reproducible response at 1–20% O2 and 200–10,000 ppm H2 at a relatively low detection operating temperature of 450 Β°C
    corecore