3 research outputs found

    Use of a biochar-based formulation for coating corn seeds

    Get PDF
    The series of experiments summarized here were conducted with the objective to evaluate the benefits of using biochar for coating corn seeds. Seeds coated with a slurry containing bio-based ingredients and biochar were tested for germination and vigor, and for their potential to being infected by the fungus Aspergillus flavus, using a novel single seed incubator specifically designed for these purposes. Biochar-treated seeds were also planted for two years in experimental fields in the Mississippi Delta to evaluate their effect on corn yield and aflatoxin contamination of kernels. Experiments were conducted with two types of commercial biochar; one was obtained from hardwood residues and the other from coconut shells. Application of both types of biochar for coating the seeds did not affect seed germination and vigor. However, treated seeds showed increased wettability and a more rapid water uptake. This resulted in a 8.5% shortening of germination time. Microbiological analysis using plate culturing and qPCR methods showed that biochar was not conducive to the growth of A. flavus. This was also confirmed by analyzing soil samples that were collected from experimental fields located in the Mississippi Delta. Most importantly, although aflatoxin contamination was different in the two experimental years, aflatoxin contamination of corn kernels was not affected by biochar-based formulations

    First Report of the Production of Mycotoxins and Other Secondary Metabolites by Macrophomina phaseolina (Tassi) Goid. Isolates from Soybeans (Glycine max L.) Symptomatic with Charcoal Rot Disease

    No full text
    Macrophomina phaseolina (Tassi) Goid., the causal agent of charcoal rot disease of soybean, is capable of causing disease in more than 500 other commercially important plants. This fungus produces several secondary metabolites in culture, including (-)-botryodiplodin, phaseolinone and mellein. Given that independent fungal isolates may differ in mycotoxin and secondary metabolite production, we examined a collection of 89 independent M. phaseolina isolates from soybean plants with charcoal rot disease using LC-MS/MS analysis of culture filtrates. In addition to (-)-botryodiplodin and mellein, four previously unreported metabolites were observed in >19% of cultures, including kojic acid (84.3% of cultures at 0.57–79.9 µg/L), moniliformin (61.8% of cultures at 0.011–12.9 µg/L), orsellinic acid (49.4% of cultures at 5.71–1960 µg/L) and cyclo[L-proline-L-tyrosine] (19.1% of cultures at 0.012–0.082 µg/L). In addition, nine previously unreported metabolites were observed at a substantially lower frequency (<5% of cultures), including cordycepin, emodin, endocrocin, citrinin, gliocladic acid, infectopyron, methylorsellinic acid, monocerin and N-benzoyl-L-phenylalanine. Further studies are needed to investigate the possible effects of these mycotoxins and metabolites on pathogenesis by M. phaseolina and on food and feed safety, if any of them contaminate the seeds of infected soybean plants

    Pigment Produced by Glycine-Stimulated <i>Macrophomina Phaseolina</i> Is a (−)-Botryodiplodin Reaction Product and the Basis for an In-Culture Assay for (−)-Botryodiplodin Production

    No full text
    An isolate of Macrophomina phaseolina from muskmelons (Cucumis melo) was reported by Dunlap and Bruton to produce red pigment(s) in melons and in culture in the presence of added glycine, alanine, leucine, or asparagine in the medium, but not with some other amino acids and nitrogen-containing compounds. We explored the generality and mechanism of this pigment production response using pathogenic M. phaseolina isolates from soybean plants expressing symptoms of charcoal rot disease. A survey of 42 M. phaseolina isolates growing on Czapek-Dox agar medium supplemented with glycine confirmed pigment production by 71% of isolates at the optimal glycine concentration (10 g/L). Studies in this laboratory have demonstrated that some pathogenic isolates of M. phaseolina produce the mycotoxin (−)-botryodiplodin, which has been reported to react with amino acids, proteins, and other amines to produce red pigments. Time course studies showed a significant positive correlation between pigment and (−)-botryodiplodin production by selected M. phaseolina isolates with maximum production at seven to eight days. Pigments produced in agar culture medium supplemented with glycine, beta-alanine, or other amines exhibited similar UV-vis adsorption spectra as did pigments produced by (±)-botryodiplodin reacting in the same agar medium. In a separate study of 39 M. phaseolina isolates, red pigment production (OD520) on 10 g/L glycine-supplemented Czapek-Dox agar medium correlated significantly with (−)-botryodiplodin production (LC/MS analysis of culture filtrates) in parallel cultures on un-supplemented medium. These results support pigment production on glycine-supplemented agar medium as a simple and inexpensive in-culture method for detecting (−)-botryodiplodin production by M. phaseolina isolates
    corecore