18 research outputs found

    Comparing recruitment strategies in a study of acupuncture for chronic back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meeting recruitment goals is challenging for many clinical trials conducted in primary care populations. Little is known about how the use of different recruitment strategies affects the types of individuals choosing to participate or the conclusions of the study.</p> <p>Methods</p> <p>A secondary analysis was performed using data from participants recruited to a clinical trial evaluating acupuncture for chronic back pain among primary care patients in a large integrated health care organization. We used two recruitment methods: mailed letters of invitation and an advertisement in the health plan's magazine. For these two recruitment methods, we compared recruitment success (% randomized, treatment completers, drop outs and losses to follow-up), participant characteristics, and primary clinical outcomes. A linear regression model was used to test for interaction between treatment group and recruitment method.</p> <p>Results</p> <p>Participants recruited via mailed letters closely resembled those responding to the advertisement in terms of demographic characteristics, most aspects of their back pain history and current episode and beliefs and expectations about acupuncture. No interaction between method of recruitment and treatment group was seen, suggesting that study outcomes were not affected by recruitment strategy.</p> <p>Conclusion</p> <p>In this trial, the two recruitment strategies yielded similar estimates of treatment effectiveness. However, because this finding may not apply to other recruitment strategies or trial circumstances, trials employing multiple recruitment strategies should evaluate the effect of recruitment strategy on outcome.</p> <p>Trial registration</p> <p>Clinical Trials.gov NCT00065585.</p

    Characteristics of patients with chronic back pain who benefit from acupuncture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although many clinicians believe there are clinically important subgroups of persons with "non-specific" low back pain, such subgroups have not yet been clearly identified. As part of a large trial evaluating acupuncture for chronic low back pain, we sought to identify subgroups of participants that were particularly responsive to acupuncture.</p> <p>Methods</p> <p>We performed a secondary analysis of data for the 638 participants in our clinical trial comparing different types of acupuncture to usual care to identify baseline characteristics that predicted responses to individualized, standardized, or simulated acupuncture treatments. After identifying factors that predicted improvements in back-related function or symptoms, we determined if these factors were more likely to predict improvement for those receiving the acupuncture treatments than for those receiving usual care. This was accomplished by testing for an interaction between the prognostic factors and treatment group in four models: functional outcomes (measured by the Roland-Morris Disability Scale) at 8 and 52 weeks post-randomization and symptom outcomes (measured with a numerical rating scale) at 8 and 52 weeks.</p> <p>Results</p> <p>Overall, the strongest predictors of improvement in back function and symptoms were higher baseline levels of these measures, receipt of an acupuncture treatment, and non-use of narcotic analgesics. Benefit from acupuncture compared to usual care was greater with worse pre-treatment levels of back dysfunction (interaction p < 0.004 for the functional outcome, Roland Morris Disability Scale at 8 weeks). No other consistent interactions were observed.</p> <p>Conclusion</p> <p>This secondary analysis found little evidence for the existence of subgroups of patients with chronic back pain that would be especially likely to benefit from acupuncture. However, persons with chronic low back pain who had more severe baseline dysfunction had the most short-term benefit from acupuncture.</p

    Comparison of yoga versus stretching for chronic low back pain: protocol for the Yoga Exercise Self-care (YES) trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Back pain, one of the most prevalent conditions afflicting American adults, is the leading reason for using complementary and alternative medicine (CAM) therapies. Yoga is an increasingly popular "mind-body" CAM therapy often used for relieving back pain and several small studies have found yoga effective for this condition. This study will assess whether yoga is effective for treating chronic low back pain compared with self care and exercise and will explore the mechanisms responsible for any observed benefits.</p> <p>Methods/Design</p> <p>A total of 210 participants with low back pain lasting at least 3 months will be recruited from primary care clinics of a large healthcare system based in Seattle. They will be randomized in a 2:2:1 ratio to receive 12 weekly yoga classes, 12 weekly conventional therapeutic exercise classes of comparable physical exertion, or a self-care book. Interviewers masked to participants' treatment group will assess outcomes at baseline and 6, 12 and 26 weeks after randomization. Primary outcomes will be back-related dysfunction and symptom bothersomeness. In addition, data will be collected on physical measurements (e.g., flexion) at baseline and 12 weeks and saliva samples will be obtained at baseline, 6 and 12 weeks. Information will be collected on specific physical, psychological, and physiological factors to allow exploration of possible mechanisms of action through which yoga could relieve back pain and dysfunction. The effectiveness of yoga will be assessed using analysis of covariance (using general estimating equations - GEE) within an intention-to-treat context. If yoga is found effective, further analyses will explore whether yoga's benefits are attributable to physical, psychological and/or physiological factors.</p> <p>Conclusions</p> <p>This study will provide the clearest evidence to date about the value of yoga as a therapeutic option for treating chronic back pain, and if the results are positive, will help focus future, more in-depth, research on the most promising potential mechanisms of action identified by this study.</p> <p>Trial registration</p> <p>This trial is registered in ClinicalTrials.gov, with the ID number of <it>NCT00447668</it>.</p

    Material Properties of the Human Lumbar Facet Joint Capsule

    No full text
    The human facet joint capsule is one of the structures in the lumbar spine that constrains motions of vertebrae during global spine loading (e.g., physiological flexio

    Comparison of human lumbar facet joint capsule strains during impulse loading versus physiological motions.

    No full text
    Abstract BACKGROUND CONTEXT: Spinal manipulation (SM) is an effective treatment for low back pain (LBP), and it has been theorized that SM induces a beneficial neurophysiological effect by stimulating mechanically sensitive neurons in the lumbar facet joint capsule (FJC). PURPOSE: The purpose of this study was to determine whether human lumbar FJC strains during simulated SM were different from those that occur during physiological motions. STUDY DESIGN/SETTING: Lumbar FJC strains were measured in human cadaveric spine specimens during physiological motions and simulated SM in a laboratory setting. METHODS: Specimens were tested during displacement-controlled physiological motions of flexion, extension, lateral bending, and axial rotations. SM was simulated using combinations of manipulation site (L 3 , L 4 , and L 5 ), impulse speed (5, 20, and 50 mm/s), and pre-torque magnitude (applied at T 12 to simulate patient position; 0, 5, 10 Nm). FJC strains and vertebral motions (using six degrees of freedom) were measured during both loading protocols. RESULTS: During SM, the applied loads were within the range measured during SM in vivo. Vertebral translations occurred primarily in the direction of the applied load, and were similar in magnitude regardless of manipulation site. Vertebral rotations and FJC strain magnitudes during SM were within the range that occurred during physiological motions. At a given FJC, manipulations delivered distally induced capsule strains similar in magnitude to those that occurred when the manipulation was applied proximally. CONCLUSIONS: FJC strain magnitudes during SM were within the physiological range, suggesting that SM is biomechanically safe. Successful treatment of patients with LBP using SM may not require precise segmental specificity, because the strain magnitudes at a given FJC during S

    Position Sensitivity of Feline Paraspinal Muscle Spindles to Vertebral Movement in the Lumbar Spine

    No full text
    Muscle spindles contribute to sensorimotor control by supplying feedback regarding muscle length and consequently information about joint position. While substantial study has been devoted to determining the position sensitivity of spindles in limb muscles, there appears to be no data on their sensitivity in the low back. We determined the relationship between lumbar paraspinal muscle spindle discharge and paraspinal muscle lengthening estimated from controlled cranialward movement of the L6 vertebra in anesthetized cats. Ramp (0.4 mm/s) and hold displacements (0.2, 0.4, 0.6, 0.8, and 1.2 mm for 2.5 s) were applied at the L6 spinous process. Position sensitivity was defined as the slope of the relationship between the estimated increase in muscle length and mean instantaneous frequency at each length. To enable comparisons with appendicular muscle spindles where joint angle was measured, we also calculated sensitivity in terms of the L6 and L7 intervertebral flexion angle (IVA). This angle was estimated from measurements of facet joint capsule strain (FJC) based on a previously established relationship between IVA and FJC strain in the cat lumbar vertebral column during lumbar flexion. Single-unit recordings were obtained from 12 muscle spindle afferents. Longissimus and multifidus muscles contained the receptive field of 10 and 2 afferents, respectively. Mean position sensitivity was 16.3 imp·s−1·mm−1 [10.6–22.1, 95% confidence interval (CI), P < 0.001]. Mean angular sensitivity was 5.2 imp·s−1·°−1 (2.6–8.0, P < 0.003). These slope estimates were more than 3.5 times greater compared with appendicular muscle spindles, and their CIs did not contain previous slope estimates for the sensitivity of appendicular spindles from the literature. Potential reasons for and the significance of the apparently high position sensitivity in the lumbar spine are discussed
    corecore