7 research outputs found

    Preliminary assessment of nuclear DNA content in Chondrilla (Asteraceae) plants of European Russia and Western Kazakhstan using fl ow cytometry

    Get PDF
     Preliminary data on the genome size of representatives of the genus Chondrilla (Asteraceae) of European Russia and Western Kazakhstan were obtained using fl ow cytometry. Among all studied specimens of the genus, for specimens of C. ambigua and C. pauciflora, a direct dependence of the genome size on the number of chromosomes was established. In our study, the DNA content of the diploid C. ambigua was 2С = 1.69 pg, and that of the triploid C. pauciflora was 2С = 2.65 pg. 2С values are within 2.29–2.69 pg in most specimens of the genus Chondrilla (typical for 13 out of 23 specimens) belonging to the following taxa: C. paucifora, C. laticoronata, C. brevirostris, C. canescens, C. graminea, C. latifolia, C. juncea. Most likely, they are triploids, and in many cases with a number of chromosomes deviating from a multiple of the main number of chromosomes. The C. latifolia sample from the population of the Kamyshinsky district of the Volgograd region showed two peaks on the histogram of the relative fl uorescence intensity, corresponding to two values of the relative DNA content, 1.68 and 2.58 pg, i.e. it turned out to be a mixoploid with two levels of ploidy (2n = 2x = 10 and 2n = 3x = 15). The diversity of genome sizes within the genus can be explained by the previously established high variability in the number of chromosomes associated with aneu- and mixoploidy

    A predictive group-contribution framework for the thermodynamic modelling of CO absorption in cyclic amines, alkyl polyamines, alkanolamines and phase-change amines: New data and SAFT- Mie parameters

    Get PDF
    A significant effort is under way to identify improved solvents for carbon dioxide (CO ) capture by chemisorption. We develop a predictive framework that is applicable to aqueous solvent + CO mixtures containing cyclic amines, alkyl polyamines, and alkanolamines. A number of the mixtures studied exhibit liquid–liquid phase separation, a behaviour that has shown promise in reducing the energetic cost of CO capture. The proposed framework is based on the SAFT- Mie group-contribution (GC) approach, in which chemical reactions are described via physical association models that allow a simpler, implicit, treatment of the chemical speciation characteristic of these mixtures. We use previously optimized group interaction parameters between some amine groups and water (Perdomo et al., 2021), and develop new group interactions for the cNH, cN, NH2, NH, N, cCHNH, and cCHN groups with CO2; a set of second-order group parameters are also developed to account for proximity effects in some alkanolamines. A combination of literature data and new experimental measurements for the absorption of CO2 in aqueous cyclohexylamine systems obtained in our current work, are used to develop and test the proposed models. The SAFT- Mie GC approach is used to predict the thermodynamics of selected mixtures, including ternary phase diagrams and mixing properties relevant in the context of CO2 capture. The current work constitutes a substantial extension of the range of aqueous amine-based solvents that can be modelled and thus offers the most comprehensive thermodynamically consistent platform to date to screen novel candidate solvents for CO2 capture

    Description of the thermodynamics and fluid-phase behaviour of aqueous solutions of linear, branched, and cyclic amines

    No full text
    The SAFT‐ɣ Mie group‐contribution equation of state is used to represent the fluid‐phase behaviour of aqueous solutions of a variety of linear, branched, and cyclic amines. New group interactions are developed in order to model the mixtures of interest, including the like and unlike interactions between alkyl primary, secondary, and tertiary amine groups (NH2, NH, N), cyclic secondary and tertiary amine groups (cNH, cN), and cyclohexylamine groups (cCHNH, cCHN) with water (H2O). The group‐interaction parameters are estimated from appropriate experimental thermodynamic data for pure amines and selected mixtures. By taking advantage of the group‐contribution nature of the method, one can describe the fluid‐phase behaviour of mixtures of molecules comprising those groups over broad ranges of temperature, pressure, and composition. A number of aqueous solutions of amines are studied including linear, branched aliphatic, and cyclic amines. Liquid‐liquid equilibria (LLE) bounded by lower critical solution temperatures (LCSTs) have been reported experimentally and are reproduced here with SAFT‐ɣ Mie approach. The main feature of the approach is the ability not only to represent accurately the experimental data employed in the parameter estimation, but also to predict the vapour‐liquid, liquid‐liquid, and vapor‐liquid‐liquid equilibria, and LCSTs with the same set of parameters. Pure compound and binary phase diagrams of diverse types of amines and their aqueous solutions are assessed in order to demonstrate the main features of the thermodynamic and fluid‐phase behaviour

    Correction: Modelling and prediction of the thermophysical properties of aqueous mixtures of choline geranate and geranic acid (CAGE) using SAFT-γ Mie

    No full text
    Correction for ‘Modelling and prediction of the thermophysical properties of aqueous mixtures of choline geranate and geranic acid (CAGE) using SAFT-γ Mie’ by Silvia Di Lecce et al., RSC Adv., 2019, 9, 38017–38031. DOI: 10.1039/C9RA07057

    Correction: Modelling and prediction of the thermophysical properties of aqueous mixtures of choline geranate and geranic acid (CAGE) using SAFT-γ Mie

    No full text
    Correction for ‘Modelling and prediction of the thermophysical properties of aqueous mixtures of choline geranate and geranic acid (CAGE) using SAFT-γ Mie’ by Silvia Di Lecce et al., RSC Adv., 2019, 9, 38017–38031. DOI: 10.1039/C9RA07057

    SAFT-gamma Mie parameters and data: Haslam et al. JCED 2020

    No full text
    SAFT-γ Mie parameters, and calculated data relating to figures in Haslam et al. JCED 2020SAFT-γ Mie parameters, and calculated data relating to figures in Haslam et al. JCED 2020
    corecore