22 research outputs found

    Survival implications vs. complications: unraveling the impact of vitamin D adjunctive use in critically ill patients with COVID-19—A multicenter cohort study

    Get PDF
    BackgroundDespite insufficient evidence, vitamin D has been used as adjunctive therapy in critically ill patients with COVID-19. This study evaluates the effectiveness and safety of vitamin D as an adjunctive therapy in critically ill COVID-19 patients.MethodsA multicenter retrospective cohort study that included all adult COVID-19 patients admitted to the intensive care units (ICUs) between March 2020 and July 2021. Patients were categorized into two groups based on their vitamin D use throughout their ICU stay (control vs. vitamin D). The primary endpoint was in-hospital mortality. Secondary outcomes were the length of stay (LOS), mechanical ventilation (MV) duration, and ICU-acquired complications. Propensity score (PS) matching (1:1) was used based on the predefined criteria. Multivariable logistic, Cox proportional hazards, and negative binomial regression analyses were employed as appropriate.ResultsA total of 1,435 patients were included in the study. Vitamin D was initiated in 177 patients (12.3%), whereas 1,258 patients did not receive it. A total of 288 patients were matched (1:1) using PS. The in-hospital mortality showed no difference between patients who received vitamin D and the control group (HR 1.22, 95% CI 0.87–1.71; p = 0.26). However, MV duration and ICU LOS were longer in the vitamin D group (beta coefficient 0.24 (95% CI 0.00–0.47), p = 0.05 and beta coefficient 0.16 (95% CI −0.01 to 0.33), p = 0.07, respectively). As an exploratory outcome, patients who received vitamin D were more likely to develop major bleeding than those who did not [OR 3.48 (95% CI 1.10, 10.94), p = 0.03].ConclusionThe use of vitamin D as adjunctive therapy in COVID-19 critically ill patients was not associated with survival benefits but was linked with longer MV duration, ICU LOS, and higher odds of major bleeding

    Genome-Wide Analysis of the Emerging Infection with Mycobacterium avium Subspecies paratuberculosis in the Arabian Camels (Camelus dromedarius)

    Get PDF
    Mycobacterium avium subspecies paratuberculosis (M. ap) is the causative agent of paratuberculosis or Johne's disease (JD) in herbivores with potential involvement in cases of Crohn's disease in humans. JD is spread worldwide and is economically important for both beef and dairy industries. Generally, pathogenic ovine strains (M. ap-S) are mainly found in sheep while bovine strains (M. ap-C) infect other ruminants (e.g. cattle, goat, deer), as well as sheep. In an effort to characterize this emerging infection in dromedary/Arabian camels, we successfully cultured M. ap from several samples collected from infected camels suffering from chronic, intermittent diarrhea suggestive of JD. Gene-based typing of isolates indicated that all isolates belong to sheep lineage of strains of M. ap (M. ap-S), suggesting a putative transmission from infected sheep herds. Screening sheep and goat herds associated with camels identified the circulation of this type in sheep but not goats. The current genome-wide analysis recognizes these camel isolates as a sub-lineage of the sheep strain with a significant number of single nucleotide polymorphisms (SNPs) between sheep and camel isolates (∼1000 SNPs). Such polymorphism could represent geographical differences among isolates or host adaptation of M. ap during camel infection. To our knowledge, this is the first attempt to examine the genomic basis of this emerging infection in camels with implications on the evolution of this important pathogen. The sequenced genomes of M. ap isolates from camels will further assist our efforts to understand JD pathogenesis and the dynamic of disease transmission across animal species

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Histological analysis of camel samples collected from animals suffering from Johne's disease.

    No full text
    <p>A) A representative of lymph node thin section stained with H&E showing diffuse granulomatous response (arrows). B) A lymph node section stained with Zeil-Neelsen stain showing high level of acid-fast bacilli. C) A representative of intestinal section stained with H&E showing aggregates of lymphatic infiltration (arrows). D) An intestinal section stained with Zeil-Neelsen stain showing patches of acid-fast bacilli. Size bars are included in the bottom of each section.</p

    Species-level typing of mycobacterial isolates from camels.

    No full text
    <p>Ethidium bromide stained 2% agarose gel of PCR amplicons of the <i>hsp65</i> gene, following restriction enzyme analysis (REA) with <i>Pst</i>I. For each set, both undigested and digested products (second lane) are shown. A 100-bp Molecular size marker is shown in the first lane.</p
    corecore