220 research outputs found

    Zero energy resonance and the logarithmically slow decay of unstable multilevel systems

    Get PDF
    The long time behavior of the reduced time evolution operator for unstable multilevel systems is studied based on the N-level Friedrichs model in the presence of a zero energy resonance.The latter means the divergence of the resolvent at zero energy. Resorting to the technique developed by Jensen and Kato [Duke Math. J. 46, 583 (1979)], the zero energy resonance of this model is characterized by the zero energy eigenstate that does not belong to the Hilbert space. It is then shown that for some kinds of the rational form factors the logarithmically slow decay of the reduced time evolution operator can be realized.Comment: 31 pages, no figure

    Macroscopic Zeno effect and stationary flows in nonlinear waveguides with localized dissipation

    Full text link
    We theoretically demonstrate the possibility to observe the macroscopic Zeno effect for nonlinear waveguides with a localized dissipation. We show the existence of stable stationary flows, which are balanced by the losses in the dissipative domain. The macroscopic Zeno effect manifests itself in the non-monotonic dependence of the stationary flow on the strength of the dissipation. In particular, we highlight the importance of the parameters of the dissipation to observe the phenomenon. Our results are applicable to a large variety of systems, including condensates of atoms or quasi-particles and optical waveguides.Comment: 5 pages, 3 figures, accepted to Phys. Rev. Let

    Quantum Zeno control of coherent dissociation

    Full text link
    We study the effect of dephasing on the coherent dissociation dynamics of an atom-molecule Bose-Einstein condensate. We show that when phase-noise intensity is strong with respect to the inverse correlation time of the stimulated process, dissociation is suppressed via a Bose enhanced Quantum Zeno effect. This is complementary to the quantum zeno control of phase-diffusion in a bimodal condensate by symmetric noise (Phys. Rev. Lett. {\bf 100}, 220403 (2008)) in that the controlled process here is phase-{\it formation} and the required decoherence mechanism for its suppression is purely phase noise.Comment: 5 pages, 4 figure

    Exact positivity of the Wigner and P-functions of a Markovian open system

    Get PDF
    We discuss the case of a Markovian master equation for an open system, as it is frequently found from environmental decoherence. We prove two theorems for the evolution of the quantum state. The first one states that for a generic initial state the corresponding Wigner function becomes strictly positive after a finite time has elapsed. The second one states that also the P-function becomes exactly positive after a decoherence time of the same order. Therefore the density matrix becomes exactly decomposable into a mixture of Gaussian pointer states.Comment: 11 pages, references added, typo corrected, to appear in J. Phys.

    Initial state maximizing the nonexponentially decaying survival probability for unstable multilevel systems

    Full text link
    The long-time behavior of the survival probability for unstable multilevel systems that follows the power-decay law is studied based on the N-level Friedrichs model, and is shown to depend on the initial population in unstable states. A special initial state maximizing the asymptote of the survival probability at long times is found and examined by considering the spontaneous emission process for the hydrogen atom interacting with the electromagnetic field.Comment: 5 pages, 1 table. Accepted for publication in Phys. Rev.

    Suppression of Zeno effect for distant detectors

    Full text link
    We describe the influence of continuous measurement in a decaying system and the role of the distance from the detector to the initial location of the system. The detector is modeled first by a step absorbing potential. For a close and strong detector, the decay rate of the system is reduced; weaker detectors do not modify the exponential decay rate but suppress the long-time deviations above a coupling threshold. Nevertheless, these perturbing effects of measurement disappear by increasing the distance between the initial state and the detector, as well as by improving the efficiency of the detector.Comment: 4 pages, 4 figure

    Initial wave packets and the various power-law decreases of scattered wave packets at long times

    Full text link
    The long time behavior of scattered wave packets ψ(x,t)\psi (x,t) from a finite-range potential is investigated, by assuming ψ(x,t)\psi (x,t) to be initially located outside the potential. It is then shown that ψ(x,t)\psi (x,t) can asymptotically decrease in the various power laws at long time, according to its initial characteristics at small momentum. As an application, we consider the square-barrier potential system and demonstrate that ψ(x,t)\psi (x,t) exhibits the asymptotic behavior t3/2t^{-3/2}, while another behavior like t5/2t^{-5/2} can also appear for another ψ(x,t)\psi (x,t).Comment: 5 pages, 1 figur

    The role of initial state reconstruction in short and long time deviations from exponential decay

    Full text link
    We consider the role of the reconstruction of the initial state in the deviation from exponential decay at short and long times. The long time decay can be attributed to a wave that was, in a classical-like, probabilistic sense, fully outside the initial state or the inner region at intermediate times, i.e., to a completely reconstructed state, whereas the decay during the exponential regime is due instead to a non-reconstructed wave. At short times quantum interference between regenerated and non-regenerated paths is responsible for the deviation from the exponential decay. We may thus conclude that state reconstruction is a ``consistent history'' for long time deviations but not for short ones.Comment: 4 pages, 6 figure

    Time-reversal symmetric resolution of unity without background integrals in open quantum systems

    Get PDF
    We present a new complete set of states for a class of open quantum systems, to be used in expansion of the Green's function and the time-evolution operator. A remarkable feature of the complete set is that it observes time-reversal symmetry in the sense that it contains decaying states (resonant states) and growing states (anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the breaking of time-reversal symmetry at the choice of whether we solve Schroedinger equation as an initial-condition problem or a terminal-condition problem. Another feature of the complete set is that in the subspace of the central scattering area of the system, it consists of contributions of all states with point spectra but does not contain any background integrals. In computing the time evolution, we can clearly see contribution of which point spectrum produces which time dependence. In the whole infinite state space, the complete set does contain an integral but it is over unperturbed eigenstates of the environmental area of the system and hence can be calculated analytically. We demonstrate the usefulness of the complete set by computing explicitly the survival probability and the escaping probability as well as the dynamics of wave packets. The origin of each term of matrix elements is clear in our formulation, particularly the exponential decays due to the resonance poles.Comment: 62 pages, 13 figure

    A quantum decay model with exact explicit analytical solution

    Full text link
    A simple decay model is introduced. The model comprises of a point potential well, which experiences an abrupt change. Due to the temporal variation the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a \textit{fractional} power law, which differs from perturbation quantum methods predictions.Comment: 4 pages, 3 figure
    corecore