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(Received 26 May 2014; accepted 1 December 2014; published online 23 December 2014)

We present a new complete set of states for a class of open quantum systems, to
be used in expansion of the Green’s function and the time-evolution operator. A
remarkable feature of the complete set is that it observes time-reversal symmetry
in the sense that it contains decaying states (resonant states) and growing states
(anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the
breaking of time-reversal symmetry at the choice of whether we solve Schrödinger
equation as an initial-condition problem or a terminal-condition problem. Another
feature of the complete set is that in the subspace of the central scattering area of
the system, it consists of contributions of all states with point spectra but does not
contain any background integrals. In computing the time evolution, we can clearly
see contribution of which point spectrum produces which time dependence. In the
whole infinite state space, the complete set does contain an integral but it is over
unperturbed eigenstates of the environmental area of the system and hence can
be calculated analytically. We demonstrate the usefulness of the complete set by
computing explicitly the survival probability and the escaping probability as well
as the dynamics of wave packets. The origin of each term of matrix elements is
clear in our formulation, particularly, the exponential decays due to the resonance
poles. C 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4904200]

I. INTRODUCTION

Over the past few decades there has been significant progress in the understanding of dissipative
phenomena, both in classical and quantum mechanics. This has been particularly achieved through
the realization that dissipative parameters such as the lifetime of an unstable particle or the diffu-
sion coefficient of Brownian motion are ultimately connected, at the most basic level, to complex
eigenvalues of the Hamiltonian or the Liouville operators.1–9 These eigenvalues correspond to gener-
alized eigenfunctions. Alternatively, the complex eigenvalues can be associated with eigenfunctions
of an effective Hamiltonian or effective Liouvillian that are non-Hermitian operators.6,7,10–16 (In some
references,6,7 these non-Hermitian operators were called collision operators.) Either way, the conclu-
sion is that dissipative phenomena need not be formulated as approximations or coarse graining of
basic dynamics; note that perturbation approximation often breaks the unitarity of the time-evolution
operator and thereby breaks time-reversal symmetry. Instead, they can be formulated in terms of
complex eigenvalues of the basic dynamical operators, without resorting to approximations.

A deeper question is the origin of time-reversal symmetry breaking or irreversibility and how it
is connected to time-reversible dynamics. Previous work has addressed this problem by introducing
time-reversal symmetry breaking in the complete set of eigenfunctions of the dynamical operator

a)Electronic address: hatano@iis.u-tokyo.ac.jp
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(for example, the Hamiltonian in quantum mechanics). This was achieved by starting with a set
of eigenfunctions with continuous real eigenvalues, and then deforming the integration contour of
the complete set to include complex eigenvalues on either the lower half plane (resonant states,
corresponding to future-oriented evolution) or on the upper half plane (anti-resonant states, cor-
responding to past-oriented evolution).1,3,5,17,18 The contour deformation, however, is not unique.
One can select certain complex eigenvalues by encircling them, while ignoring other complex
eigenvalues. The remainder contour becomes a “background integral.” The resulting spectrum of
eigenvalues thus includes both discrete complex eigenvalues and a continuum coming from the
background integral. Since this separation into discrete eigenvalues and background integral is not
unique, the physical interpretation of this construction is not very clear.

Another common view on irreversibility is that it is connected to the initial conditions of the
system in question, or even the whole universe. It is assumed that the initial state is a state of very
low entropy; the second law of thermodynamics then explains irreversibility. This view, however,
does not make a precise connection with dynamics and again it relies on approximations or coarse
graining in order to derive the second law.

In this paper, we synthesize the views described above by formulating a complete set of
eigenfunctions of the Hamiltonian for a class of quantum mechanical systems that include both
resonant and anti-resonant states. Our complete set is explicitly time-reversal symmetric. We avoid
the introduction of any arbitrary background integral, as we obtain a complete set of eigenfunctions
corresponding to all the real and complex discrete eigenvalues (i.e., all point spectra) of the Hamil-
tonian. We find that for a time-reversal symmetric condition at time t = 0, time-reversal symmetry is
broken for t , 0 depending on the sign of t. Mathematically, this corresponds to choosing whether
we solve an initial-condition problem or a terminal-condition problem, which may favor resonant or
anti-resonant states, respectively.

Moreover, we find that for certain specifically prepared conditions which are not time-reversal
symmetric, anti-resonant states dominate during a part of the time evolution and resonant states
dominate during another part. For example, by performing a momentum inversion on a wave
function emitted from a quantum dot, the wave function will collect itself back into the quantum
dot (like a movie played backwards, showing water waves collecting themselves toward a point
where a rock was dropped). During this period, anti-resonant states dominate. Subsequently the
wave function is re-emitted, a process during which resonant states dominate. By maintaining
time-reversal symmetry in the set of eigenfunctions, the selection of future-oriented resonant states
or past-oriented anti-resonant states is uniquely determined by the overlap between either the initial
or terminal conditions and the discrete eigenfunctions of the Hamiltonian.

Our set of time-reversal symmetric eigenstates is limited to a class of quantum systems with
a tight-binding Hamiltonian. In different contexts, sets of time-reversal symmetric eigenstates have
been presented for scattering problems19 and for the Friedrichs-Lee model.20 However, our formu-
lation, based on the solution of a quadratic eigenvalue problem, is general enough that it can be
extended to other systems, including systems considered in non-equilibrium statistical mechanics.
Such extensions are left for future work. In the present paper, we will focus on the tight-binding
systems because they are more tractable, having only a finite number of discrete eigenstates, and
thereby, we can present the main ideas in enough detail that can be generalized subsequently.

The outline of the present paper is as follows. Sections II and III introduce basic concepts and
models which we use throughout the paper. Section IV presents an overview of the results of the
paper. Sections V–X give the derivation of the results step by step in details. Using the results, we
calculate the survival probability in Sec. XI and the escaping probability in Sec. XII. Finally, in
Secs. XIII and XIV we analyze dynamics of wave packets, breaking them down into resonant and
anti-resonant states. Section XV summarizes the paper.

II. RESONANT STATE AS AN EIGENSTATE THAT BREAKS THE TIME REVERSAL
SYMMETRY: A SHORT REVIEW

In this section, we present a concise review of the resonant state as an eigenstate of the
Schrödinger equation. Let us consider for the moment the standard Schrödinger equation in a
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FIG. 1. The positions of the discrete and continuous eigenvalues in (a) the first and second Riemann sheets of the complex
E plane and (b) the complex k plane.

one-dimensional space with a real potential on a compact support around the origin(
− d2

dx2 + V (x)
)
ψ(x) = Eψ(x), (1)

where V (x) ∈ R and V (x) = 0 for |x | > L. (We will switch to the tight-binding model on a discretized
space in Sec. III.) Note that Eq. (1) observes the time-reversal symmetry; external magnetic fields
are absent. The wave function ψ(x) for a real eigenvalue therefore can be made a real function.

Schrödinger equation (1) has eigenvalues with point spectra and those with a continuous spec-
trum; see Fig. 1. Let us refer to the former as the discrete eigenstates and the latter as the continuous
eigenstates. The discrete eigenstates have four types, namely, the bound states, the anti-bound
states, the resonant states, and the anti-resonant states. All of them are given by the wave function
under the Siegert boundary condition19,21–35

ψ(x) ∝ eik |x | for |x | > L (2)

with the eigenvalue E = k2. This is indeed equivalent to seeking the poles of the S-matrix.30,35

Schrödinger equation (1) although its Hamiltonian appears to be Hermitian, nonetheless can
harbor complex eigenenergies because the system is open. The Hamiltonian is Hermitian inside the
Hilbert space but not outside it.16,35 The eigenfunctions for the complex energy eigenvalues indeed
diverge spatially and hence reside outside the Hilbert space.

Out of the four types of the discrete states, the bound states are located on the positive imag-
inary axis of the complex k plane, i.e., k = iκ with κ > 0, and hence are on the negative real axis
of the first Riemann sheet of the complex E plane. Their eigenfunction decays exponentially in the
form exp(−κ |x |), which can be confirmed by inserting k = iκ into Eq. (2). The bound states are the
only discrete eigenstates that are inside the Hilbert space.

The anti-bound states are on the negative imaginary axis of the complex k plane, i.e., k = iκ
with κ < 0, and hence on the negative real axis of the second Riemann sheet of the complex E
plane. Their eigenfunctions diverge spatially in the form exp(|κ∥x |). We may understand the origin
of these states in the following way. Consider a closed system where we have an attractive potential
around the origin with infinitely high walls on the right and left boundaries (Fig. 2). We would have
only bound states, some of which would be inside the range of the attractive potential but some
outside, analogously to the bonding and anti-bonding orbitals of a chemical bonding. If we move
away the boundary walls to make the system open, the states outside the potential range would turn
into the anti-bound states. This is why the wave functions of the anti-bound states spatially diverge.
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The resonant states are located in the fourth quadrant of the complex k plane and hence in
the lower half of the second Riemann sheet of the complex E plane. Note that the term “resonant
states” here refers to eigenstates of time-independent Schrödinger equation (1); it does not refer
to resonant phenomena found in the time evolution of an incoming wave packet scattered by a
trapping potential as a solution of the time-dependent Schrödinger equation. (We will analyze the
time evolution of wave packets in Secs. XIII and XIV.)

We can visualize the resonant states as eigenstates of the static Schrödinger equation as shown
in Fig. 3(a). On one hand, the state decays exponentially in time because the imaginary part of its
eigenenergy E is negative in the exponent of the time-evolution factor e−iEt. On the other hand, a
resonant state has only out-going waves according to Eq. (2) because the real part of its eigen-wave
number k is positive. These two facts combined yield the view that the particles escape away from
the trapping potential. We can indeed prove the particle-number conservation on the basis of this
view by noting the proportionality between the imaginary part of the eigenenergy and the real part
of the eigen-wave number.35–37 Because the imaginary part of the eigen-wave number is negative,
the eigenfunction spatially diverges. This makes possible for the seemingly Hermitian Hamiltonian
to have complex eigenvalues, as we explained above. From a physical point of view, the divergence
in space means that the particles eventually escape away from the potential.

The anti-resonant states are the time reversal of the resonant states as visualized in Fig. 3(b).
An anti-resonant state has only in-coming waves because the real part of its eigen-wave number k
is negative. The state grows exponentially in time because the imaginary part of its eigenenergy E
is positive in the exponent of e−iEt. We thereby have the view that the particles are injected into the
trapping potential.

We stress here that each of resonant and anti-resonant states has an arrow of time, breaking
the time-reversal symmetry. A resonant state and an anti-resonant state always appear as a complex
conjugate pair, together recovering the time-reversal symmetry that the original Schrödinger equa-
tion observes. We can therefore regard the appearance of the pair of time-reversal asymmetric states
out of a time-reversal symmetric equation as the seed of spontaneous breaking of time reversal
symmetry.

A key feature of our expansion of the Green’s function and the time-evolution operator, which
we will present below, is that it contains the resonant and anti-resonant states parallelly, thereby
retaining the time-reversal symmetry until the last moment. Mathematically, the time-reversal sym-
metry is finally broken when we choose to observe the time evolution from an initial condition or
the one towards a terminal condition.

FIG. 2. (a) A closed system with a bound state (i) inside the potential and a bound state (ii) outside it. (b) When the boundaries
are taken away so that the system may be open, the bound state (i) remains a bound state, but the bound state (ii) diverges
spatially, turning into an anti-bound state.
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FIG. 3. (a) Visualization of a resonant state as an eigenstate of the static Schrödinger equation. The number of particles de-
creases exponentially in the trapping potential according to the negative imaginary part of the eigenenergy. The corresponding
amount of the particles leaks from the potential according to the positive real part of the eigen-wave number. (b) Visualization
of an anti-resonant state, which is the time reversal of a resonant state. Particles gather into the trapping potential according
to the negative real part of the eigen-wave number. The number of the particles thereby increases exponentially according to
the positive imaginary part of the eigenenergy.

III. SYSTEM IN QUESTION

In this section, we introduce the system in question. We consider a class of open quantum
systems consisting of a dot of N sites with semi-infinite leads attached to some of the dot sites
(Fig. 4(a)). Note that the leads must be semi-infinite in order for us to have resonant states; other-
wise, the leak shown in Fig. 3(a) would come back to the trapping potential and destroy the resonant
states. Any number of leads can be attached to any sites of the dot. Let the label iα denote the αth
lead attached to the ith site of the dot, di. The Hamiltonian which we consider here consists of three
parts; namely, the dot Hamiltonian, the lead Hamiltonian, and the contact Hamiltonian

H B Hd + Hleads + Hcontacts. (3)

The first term is the tight-binding Hamiltonian inside the dot

Hd B −
N

i, j=1
i, j

ti j |di⟩⟨d j | +
N
i=1

εi |di⟩⟨di |, (4)

where |di⟩ denotes the site basis of the ith site of the dot and ti j = t j i ∈ R, so that we have no
magnetic fields and the time reversal symmetry is not explicitly broken. The chemical potentials εi
at the dot sites are all real, εi ∈ R, and hence, the dot Hamiltonian Hd is real symmetric under the
basis set of {|di⟩|i = 1,2, . . . ,N}.

The second term of (3) is the tight-binding Hamiltonian for the semi-infinite leads

HleadsB
N
i=1

ni
α=1

H lead
iα , (5)

H lead
iα B −tlead

∞
xiα=1

(|xiα + 1⟩⟨xiα | + |xiα⟩⟨xiα + 1|) , (6)

where H lead
iα is the tight-binding Hamiltonian of the αth of all ni leads that are attached to the ith site

of the dot, |xiα⟩ with 1 ≤ xiα < ∞ denotes the basis of a site on the lead and the hopping amplitude
tlead ∈ R is common to all leads. We hereafter put

tlead = 1, (7)

making it the unit of the energy. We have also put the lattice constant to unity. The dispersion
relation on a lead is therefore given by

E = −(eik + e−ik) = −2 cos k, (8)
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where k is the wave number limited to the first Brillouin zone

−π ≤ k ≤ π (9)

because the leads consist of regular lattices.
The last term of (3) is the tight-binding coupling Hamiltonian between the dot and the leads

HcontactsB
N
i=1

ni
α=1

Hcontact
iα , (10)

Hcontact
iα B −tiα (|1iα⟩⟨di | + |di⟩⟨1iα |) , (11)

where 1iα denotes the end site of the lead which directly couples to the dot site di and tiα ∈ R.
This Hamiltonian can be a prototype model of various open quantum systems. For example, the

model in Fig. 4(a) can describe an (N − 2)-level quantum dot which is connected to two quantum
wires;38 see Fig. 4(b).

We next define projection operators which separate the dot space and the lead space:

P B
N
i=1

|di⟩⟨di |, (12)

Q B I∞ − P =
N
i=1

ni
α=1

∞
xiα=1

|xiα⟩⟨xiα |, (13)

FIG. 4. (a) A schematic view of the general system which we consider in the present paper. (b) An (N − 2)-level quantum
dot with two quantum wires. The model (a) can be a prototype of the system (b).
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TABLE I. The positions of the discrete states (the states with point spectra)
in the complex E plane, the complex k plane, and the complex λ plane for
tight-binding systems. See Fig. 5 for the symbols.

State En, kn and λn

Bound on the lines AC or BD
Anti-bound on the lines AE or BF
Resonant in the plane δ

Anti-resonant in the plane γ

where I∞ is the identity operator in the whole space spanned by all site bases. Note the relations

PHP = Hd (14)
PHQ + QHP = Hcontacts (15)

QHQ = Hleads. (16)

As long as we restrict ourselves to the P subspace, which is spanned by the dot sites {|di⟩}, the P
operator (12) is the N × N identity matrix, and therefore, we will refer to it as IN where appropriate.

As we will show below in Secs. VI and VII this open system generally has 2N pieces of
discrete states with point spectra, which contain bound, anti-bound, resonant, and anti-resonant
states, as was reviewed in Sec. II. The locations of the discrete states are modified from the ones
indicated in Fig. 1 for the spatially continuous models to the ones indicated in Table I for the
tight-binding models.

Because the present system has the time-reversal symmetry, every term in the Hamiltonian (3)
can be expressed as a real symmetric matrix. We can thereby obtain the following relations for
the discrete eigenstates. We can express the states with real eigenvalues, namely, the bound and
anti-bound states, as real vectors. In other words, these states do not break the time-reversal symme-
try, which the Schrödinger equation observes. We can therefore transpose the Schrödinger equation
H |ψn⟩ = En|ψn⟩ to have

|ψn⟩TH = En |ψn⟩T . (17)

We thereby find that the left-eigenvector is not only the Hermitian conjugate but also the real
transpose of the right-eigenvector

⟨ψ̃n | B |ψn⟩T = |ψn⟩† C ⟨ψn | for n ∈ bound or anti-bound states. (18)

We here unnecessarily added the tilde symbol to the left-eigenvector on the left in order to unify the
symbol for the resonant and anti-resonant states, for which the left-eigenvectors are not the Hermi-
tian conjugate of the right-eigenvector, as we will show now. Wherever appropriate, we also use the
symbol without the tilde for the left-eigenvectors, which we let denote the Hermitian conjugate of
the right-eigenvectors.

Indeed, the right-eigenvectors for the resonant and anti-resonant states are not generally real
vectors because their eigenvalues are complex. In other words, these states break the time-reversal
symmetry. Since the anti-resonant state is the time reversal of the corresponding resonant state, we
have

En̄ = En
∗ and |ψn̄⟩ = |ψn⟩∗ for n ∈ resonant states and n̄ ∈ anti-resonant states, (19)

where we let the subscript n̄ denote the anti-resonant state that corresponds to the resonant state
labeled by n. The pair of a resonant state and its complex conjugate anti-resonant state (n, n̄)
recovers the time-reversal symmetry of the whole system of solutions. Because of Eq. (17) the
left-eigenvector of each resonant or anti-resonant state is real transpose but not the Hermitian
conjugate of the right-eigenvector25–27,39

⟨ψ̃n | = |ψn⟩T , |ψn⟩† for n ∈ resonant or anti-resonant. (20)
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FIG. 5. The correspondence among the three complex planes: (a) the complex E plane with the first and second Riemann
sheets; (b) the complex k plane; (c) the complex λ plane. Parts of the planes with the same index α, β, γ, or δ correspond
to each other. The points with the same index A, B, C, D, E, or F correspond to each other. The segment AB is the cosine
energy band, which connects the two Riemann sheets as a branch cut. The band edges A and B are the branch points.

We thereby arrive at the relations

⟨ψ̃n | = |ψn̄⟩†, (21)

⟨ψ̃n̄ | = |ψn⟩† for n ∈ resonant states and n̄ ∈ anti-resonant states; (22)

see Appendix A of Ref. 38 for the relations with and without magnetic fields.

IV. OVERVIEW OF THE RESULTS

Let us here present the results that we will prove below for the class of open quantum systems
defined in Sec. III. The main result in the present paper is the new resolution of unity in the form

IN =
2N
n=1

P|ψn⟩⟨ψ̃n |P. (23)

The subscript n in Eq. (23) denotes each of all 2N discrete eigenstates including resonant, anti-
resonant, bound, and anti-bound states. The bra and ket vectors ⟨ψ̃n | and |ψn⟩ are their left- and
right-eigenvectors, respectively. Note that this resolution of unity is valid as long as all discrete
eigenstate are separate, no matter how some of them are close to each other in such a way that
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the resonance peaks overlap on the real energy axis. The Fano shape of resonance peak is indeed
successfully observed within the present framework38,40 when two resonance peaks overlap and
interfere.

When two resonance poles come together precisely, that is, when they coalesce, they form
an exceptional point,41 which is an interesting topic itself but is out of scope of the present pa-
per; generalization of our approach to the case of the coalescence may be reported elsewhere. A
related preliminary result is that when the eigenvalues of a resonant/anti-resonant pair of eigenstates
coalesce at an exceptional point, the normalization constants of these eigenstates diverge; how-
ever, the diverging terms are canceled in expansion (23) when the resonant and anti-resonant state
contributions are added to each other.42

We can use the new complete set of 2N states to expand the Green’s function G(E) and the
time-evolution operator e−iH t in the forms

PG(E)P = P
1

EI∞ − H
P =

2N
n=1

P|ψn⟩ λλn
λ − λn

⟨ψ̃n |P, (24)

Pe−iH tP =
1

2πi

2N
n=1


C2

exp

i
(
λ +

1
λ

)
t


P|ψn⟩ λn
λ − λn

⟨ψ̃n |P
(
−λ + 1

λ

)
dλ, (25)

where

λ = eik (26)

converts the dispersion relation (8) into the form

E(λ) = −λ − 1
λ
. (27)

The 2N pieces of discrete eigenvalues En are here represented by λn defined in

En = −2 cos kn = E(λn) = −λn − 1
λn

; (28)

we choose an appropriate one of kn and λn from the two solutions of Eq. (28) on the basis of Table I.
The integration contour C2 in Eq. (25) is to be specified below in Fig. 7(c).

The expansion of the Green’s function in the P subspace, Eq. (24) as well as the basic idea
of the following proofs first appeared in Ref. 9 for a one-dimensional open quantum system. The
Green’s function in the P subspace is particularly important because it gives the transmission
coefficient from a lead iα to another lead j β in the form43,44

Tiα, jβ(E) = (tiαt jβ)2 sin2k
�⟨di |G(E)|d j⟩�2 , (29)

and hence, the Landauer formula44,45 can convert it to the electric conductance as

Giα, jβ =
2e2

h
Tiα, jβ, (30)

where e is the charge of an electron and h is the Planck constant. The time evolution in the P
subspace, Eq. (25) is useful in computing the survival probability of a particle in an excited state,
which we will do in Sec. XI.

A remarkable point of expansions (23)–(25) is the absence of the background integral. In the
conventional analysis, the resonant states were taken into account by modifying the contour of the
background integral as follows. R. Newton46,47 proved that the bound states and the continuum
scattering eigenstates form a complete set of the open quantum system. We can straightforwardly
convert the proof to the tight-binding system to have

I∞ =


n∈bound

|φn⟩⟨φn | +
 π

−π

dk
2π

|φk⟩⟨φk |, (31)

1
EI∞ − H

=


n∈bound

|φn⟩ 1
E − En

⟨φn | +
 π

−π

dk
2π

|φk⟩ 1
E − Ek

⟨φk |, (32)
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FIG. 6. Modification of the integration contour in Eqs. (31) and (32) over the range −π ≤ k ≤ π on the real axis. The portion
0 ≤ k ≤ π is lowered to include some of the resonant states in the fourth quadrant whereas the other resonant states are
excluded. The portion −π ≤ k ≤ 0 is raised to keep the symmetry −k ↔ k . All anti-resonant states in the third quadrant are
therefore excluded.

where the first summation runs over all bound states and |φk⟩ denotes the continuum scatter-
ing eigenstate with dispersion relation (8). We here denoted the eigenstates by |φn⟩ intentionally
because its normalization is different from the one of |ψn⟩ in Eqs. (23)–(25) as will be given below
in Eqs. (93) and (94). Note that for the bound and scattering eigenstates, the left-eigenvectors are
the Hermitian conjugate of the right-eigenvectors and hence, we omitted the tilde symbols from the
left-eigenvectors.

We could extract the contributions of some of the resonant states by modifying the contour on
the real axis into the fourth quadrant of the complex k plane28,33,48

 π

−π

dk
2π

|φk⟩⟨φk | =


n∈some res.

|φn⟩⟨φ̃n | +

C

dk
2π

|φk⟩⟨φk |; (33)

see Fig. 6. We refer to the second term on the right-hand side as the background integral.
The approach has two drawbacks. First, it is arbitrary to choose which resonant states we

include and which we exclude. In other words, we are splitting the left-hand side of Eq. (33)
arbitrarily into the resonant contributions and the background integral. Therefore, in general, the
background integral has no clear physical meaning. Second, the formulation explicitly breaks
the time-reversal symmetry. It extracts the contributions of resonant states but not those of the
time-reversal anti-resonant states.

In contrast, our approach produces expansions which perfectly maintain the time-reversal sym-
metry. Furthermore, the expansions do not have any background integrals as long as they are
considered in the P subspace. An integral indeed appears when we include the Q subspace but with

FIG. 7. (a) The integration contour C1 in the complex energy plane. (b) The contour mapped onto the complex wave-number
plane. (c) The contour mapped onto the complex λ plane, which is referred to as C2. The contours are all marked by olive
green curves. The blue crosses indicate the bound states, the red crosses the anti-bound states, and the purple crosses the
resonant and anti-resonant states. The green curves indicate the scattering states. In (a), the contour is on the first Riemann
sheet, whereas the anti-bound states, the resonant states and the anti-resonant states are marked as crosses with lighter color
to indicate that they are all on the second Riemann sheet. The scattering states double back in (a). The black cross in (c) is
the pole at the origin, which corresponds to a point infinitely far away in (a) and (b).
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a critical difference. For example, the resolution of unity takes the form

I∞ =
2N
n=1

P|ψn⟩⟨ψ̃n|P +

iα


dkiα
2π

Q|kiα⟩⟨kiα |Q (34)

as we will show below in Eq. (102) where |kiα⟩ denotes scattering eigenstate (B18) of the unper-
turbed lead Hamiltonian Hleads = QHQ. Since the integral in the second term on the right-hand side
is with respect to the unperturbed states, we can generally carry it out rigorously for specific matrix
elements and thereby eliminate the background integral. It is remarkable that the perturbations
Hcontacts = PHQ +QHP affect only the first term in the P subspace in our formulation. This is
because we factor out the Q subspace as we will show in Sec. V.

V. EFFECTIVE HAMILTONIAN

Throughout the three sections V–VII we will map the eigenvalue problem of the open quantum
systems in infinite dimensions, first into a nonlinear eigenvalue problem in N dimensions, and
then into a generalized linear eigenvalue problem in 2N dimensions. When we compute physical
quantities in Secs. VIII–XII we start from the 2N-dimensional space, trace back first into the
N-dimensional space, and then into the infinite-dimensional space.

In the present section, we show how we factor out the Q subspace and focus on the N-
dimensional P subspace. We utilize the effective Hamiltonian for an open quantum system defined
in the P subspace6,7,10–14,38,49–56

Heff(E) B PHP + PHQ
1

E − QHQ
QHP. (35)

It has the same discrete eigenvalues as those of the full Hamiltonian H; see Appendix A for
derivation. Equivalently, the Green’s function of the full Hamiltonian

G(E) B 1
EI∞ − H

(36)

is equal to that of the effective Hamiltonian in the P subspace38

PG(E)P = P
1

EI∞ − H
P =

1
EIN − Heff(E) C Geff(E); (37)

see Appendix B for a proof.
For the specific open quantum system defined in Fig. 4(a), we can easily write down the

effective Hamiltonian as follows:

Heff(E) = Hd + Σ(E), (38)

Σ(E) B −eikPHQHP =
N
i=1

ni
α=1

Σiα(E), (39)

where Eq. (B28) gives the self-energy for the (iα)th lead in the form38,57

Σiα(E) B −(tiα)2eik |di⟩⟨di | = −(tiα)2λ|di⟩⟨di | (40)

with the wave number k being related to the particle energy E as in dispersion relation (8) and λ
being defined in Eq. (26). Note that effective Hamiltonian (38) is an N × N matrix in the basis set
{|di⟩|i = 1,2, . . . ,N} of the P subspace.

The eigenvalue problem therefore reads as follows:

(EnIN − Heff(E)) P|ψn⟩ = 0, (41)

where P|ψn⟩ is an N-dimensional column vector. We can always reproduce the vector in the whole
space from the solution P|ψn⟩ of Eq. (41) as follows:6,7,10–14,38,49–56

|ψn⟩ = P|ψn⟩ +Q|ψn⟩
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= P|ψn⟩ + 1
En −QHQ

QHP|ψn⟩

=

(
P +

1
En −QHQ

QHP
)
(P|ψn⟩), (42)

where we used Eq. (A4). Using Eq. (B26) we can compute it explicitly for the specific open
quantum system in Fig. 4(a) in the form38,57

⟨xiα |ψn⟩ = ⟨xiα | 1
En −QHQ

QHP|di⟩⟨di |ψn⟩
= tiαeiknxiα⟨di |ψn⟩ = tiαλnxiα⟨di |ψn⟩, (43)

where kn and λn are given in Eq. (28). This is consistent with the fact that all eigenstates with point
spectra are given under the Siegert boundary condition (2).19,21–35

To summarize this section, we have mapped the infinite-dimensional eigenvalue problem
H |ψ⟩ = E |ψ⟩ to N-dimensional eigenvalue problem (41). We, however, cannot use Eq. (41) for
the expansion of the Green’s function as it is; it is not a standard eigenvalue problem because
the effective Hamiltonian Heff(E) itself depends on the energy. Indeed, we will see below that the
eigenvalue problem has 2N pieces of eigenvalues, not N pieces.

VI. QUADRATIC EIGENVALUE PROBLEM FOR THE EFFECTIVE HAMILTONIAN

In the present section, we will formulate the eigenvalue problem of the effective Hamiltonian,
Eq. (41), as a quadratic eigenvalue problem in the N-dimensional space. We then map the problem
into a generalized (linear) eigenvalue problem in an expanded 2N-dimensional space.

Let us rewrite eigenvalue equation (41) using λ defined in Eq. (26). Since the particle energy
now is given by Eq. (27) we have9(

−λIN −
1
λ

IN − Hd + λΘ

)
P|ψ⟩ = 0, (44)

where

Θ B −1
λ
Σ(E) = PHQHP (45)

is an N × N diagonal matrix with the constant diagonal elements

Θii B

ni
α=1

(tiα)2 (46)

for 1 ≤ i ≤ N . It is indeed related to the matrix Γ in Ref. 38 as

Γ = Θ sin k . (47)

We can further rewrite Eq. (44) as

Z(λ)P|ψ⟩ = 0 (48)

with

Z(λ) B λ2(IN − Θ) + λHd + IN , (49)

which is a quadratic eigenvalue problem58 in the sense that Z(λ) is quadratic in λ instead of a
linear function in the standard eigenvalue problem. Note that the term in the original eigenvalue
function (41) is recovered by

E(λ)IN − Heff(E(λ)) = −1
λ

Z(λ). (50)

Writing down eigenvalue equation (41) in the form of quadratic eigenvalue equation (48) as well as
further algebra leading to the expansion of the Green’s function, Eq. (90) below, was first done in
Ref. 9 for a one-dimensional open quantum system.
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Following the standard treatment of quadratic eigenvalue problem,58 we linearize Eq. (48) as
follows:

(A − λB) |Ψ⟩ = 0, (51)

where A and B are λ-independent 2N × 2N real symmetric matrices given by

AB *
,

0 IN
IN Hd

+
-
, (52)

B B *
,

IN 0
0 −IN + Θ

+
-
, (53)

and 0 here means the N × N zero matrix yielding

A − λB = *
,

−λIN IN
IN Hd + λ(IN − Θ)

+
-
, (54)

while |Ψ⟩ is a λ-dependent 2N-dimensional column vector given by

|Ψ⟩ B *
,

P|ψ⟩
λP|ψ⟩

+
-
. (55)

Note that the matrix B is a diagonal matrix.
Equation (51) is a generalized linear eigenvalue problem. It is called ”generalized” because we

have the matrix B in place of the identity matrix for the standard linear eigenvalue problem. The
important point here is that now the matrices A and B are both independent of the energy. We can
therefore use Eq. (51) to expand the Green’s function.

We can confirm Eq. (51) as follows. The first row gives the trivial identity

−λP|ψ⟩ + (λP|ψ⟩) = 0, (56)

whereas the second row gives

P|ψ⟩ + [Hd + λ(IN − Θ)] (λP|ψ⟩) = 0, (57)

which is equivalent to Eq. (48). This is analogous to the technique of splitting a second-order
differential equation into a set of two first-order differential equations.58

We can see the equivalence between Eqs. (48) and (51) more clearly using the two matrices58

X(λ)B *
,

−Hd − λ(IN − Θ) IN
IN 0

+
-
, (58)

Y1(λ)B *
,

IN 0
λIN IN

+
-
, (59)

Y2(λ)B *
,

IN λIN
0 IN

+
-
. (60)

Straightforward algebra shows

X(λ)(A − λB)Y1(λ) = Y2(λ)(A − λB)X(λ) = *
,

Z(λ) 0
0 IN

+
-
. (61)

Since the determinants of the matrices X(λ), Y1(λ), and Y2(λ) are nonzero constant, we can invert
them to obtain

X(λ)−1 = *
,

0 IN
IN Hd + λ(IN − Θ)

+
-
, (62)

Y1(λ)−1 = *
,

IN 0
−λIN IN

+
-
, (63)
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Y2(λ)−1 = *
,

IN −λIN
0 IN

+
-
. (64)

We then have

Y1(λ)−1(A − λB)−1X(λ)−1 = X(λ)−1(A − λB)−1Y2(λ)−1 = *
,

Z(λ)−1 0
0 IN

+
-
, (65)

which confirms that the singularities of (A − λB)−1 are the same as those of Z(λ)−1. Note that
because of Eq. (50), the Green’s function of the effective Hamiltonian is now given by58

PG(E(λ))P = Geff(E(λ)) = 1
E(λ)IN − Heff(E(λ))

= −λZ(λ)−1

= −λ
(
IN 0

)
Y1(λ)−1(A − λB)−1X(λ)−1 *

,

IN
0
+
-

= −λ
(
IN 0

) (A − λB)−1 *
,

0
IN

+
-
. (66)

To summarize the present section, we can solve N-dimensional eigenvalue equation (41) of the
energy-dependent effective Hamiltonian Heff(E) by solving 2N-dimensional generalized eigenvalue
equation (51) of the energy-independent matrices A and B. Since the 2N-dimensional generalized
eigenvalue problem generally yields 2N eigenstates, we have 2N eigenstates for N-dimensional
energy-dependent eigenvalue problem (41). (Some eigenvalues can become infinite for special
values of the system parameters; see Appendix H of Ref. 38.) We will use these 2N eigenstates to
expand the Green’s function.

Note that although the matrices A and B are both Hermitian (more precisely, real symmetric),
the present generalized eigenvalue problem is still non-Hermitian (more precisely, real asymmetric)
because A and B do not commute with each other in general: [A,B] , 0. If B is invertible in
particular, eigenvalue equation (51) reduces to the standard eigenvalue equation (B−1A − λI)|Ψ⟩ = 0
for the non-Hermitian (real asymmetric) matrix B−1A.

VII. GENERALIZED EIGENVALUE PROBLEM

In order to see how we can use the 2N eigenstates for the Green’s function expansion, let us
give a tutorial review of the generalized eigenvalue problem in the context of Eq. (51). In the present
section, we will drop the projection operator P for brevity; we always work in the P subspace here.
Suppose that eigenvalue equation (48) has an eigenvalue λn with the right-eigenvector |ψn⟩ and the
left-eigenvector ⟨ψ̃n |

Z(λn)|ψn⟩ = ⟨ψ̃n |Z(λn) = 0 (67)

for n = 1,2, . . . ,2N . Then, the 2N-dimensional column vector

|Ψn⟩ B *
,

|ψn⟩
λn |ψn⟩

+
-

(68)

and the 2N-dimensional row vector

⟨Ψ̃n | B
(⟨ψ̃n | λn⟨ψ̃n |

)
(69)

are the right- and left-eigenvectors of generalized eigenvalue equation (51) with the eigenvalue λn:

(A − λnB)|Ψn⟩ = ⟨Ψ̃n |(A − λnB) = 0 (70)

for n = 1,2, . . . ,2N . We can indeed confirm Eq. (70) by using

A − λB = X(λ)−1 *
,

Z(λ) 0
0 I

+
-

Y1(λ)−1 = Y2(λ)−1 *
,

Z(λ) 0
0 I

+
-

X(λ)−1 (71)
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because

Y1(λn)−1|Ψn⟩ = *
,

|ψn⟩
0

+
-
, (72)

⟨Ψ̃n|Y2(λn)−1 =
(⟨ψ̃n | 0

)
. (73)

We now show that the vectors {|Ψn⟩|n = 1,2, . . . ,2N} and {⟨Ψ̃n∥n = 1,2, . . . ,2N} constitute a
bi-orthonormal set under the metric given by B. Let us normalize the vector |ψn⟩ and ⟨ψ̃n | so that
|Ψn⟩ and ⟨Ψ̃n | may satisfy

⟨Ψ̃n |B|Ψn⟩ = 1. (74)

Equation (70) then is followed by

0 = ⟨Ψ̃n |(A − λnB)|Ψn⟩ = ⟨Ψ̃n|A|Ψn⟩ − λn, (75)

or

⟨Ψ̃n |A|Ψn⟩ = λn. (76)

Assume that the eigenvalues have no degeneracy λn , λm for n , m. Then, we have

⟨Ψ̃m|(A − λnB)|Ψn⟩ = ⟨Ψ̃m|(A − λmB)|Ψn⟩ = 0 (77)

or

(λm − λn)⟨Ψ̃m|B|Ψn⟩ = 0, (78)

and therefore,

⟨Ψ̃m|B|Ψn⟩ = 0 (79)

for m , n.
Equations (74) with (79) indicate that the vectors {|Ψn⟩|n = 1,2, . . . ,2N} and {⟨Ψ̃n∥n = 1,2,

. . . ,2N} constitute a bi-orthonormal pair under the metric B. By constructing the 2N × 2N matrices

U B
( |Ψ1⟩ |Ψ2⟩ · · · |Ψ2N⟩

)
= *
,

|ψ1⟩ |ψ2⟩ · · · |ψ2N⟩
λ1|ψ1⟩ λ2|ψ2⟩ · · · λ2N |ψ2N⟩

+
-
, (80)

Ũ B

*......
,

⟨Ψ̃1|
⟨Ψ̃2|
...

⟨Ψ̃2N |

+//////
-

=

*......
,

⟨ψ̃1| λ1⟨ψ̃1|
⟨ψ̃2| λ2⟨ψ̃2|
...

...

⟨ψ̃2N | λ2N⟨ψ̃2N |

+//////
-

, (81)

we have

Ũ AU = Λ, (82)

ŨBU = I2N , (83)

Ũ(A − λB)U = Λ − λI2N , (84)
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where Λ is the 2N × 2N diagonal matrix with the diagonal element Λnn = λn and I2N here is the
2N × 2N identity matrix.

In the present case, in particular, the matrices A and B are real symmetric as given in Eqs. (52)
and (53); note that both Hd in Eq. (4) and Θ in Eq. (46) can be taken to be real symmetric because
there are no magnetic fields and hence, we do not break the time-reversal symmetry explicitly. The
first equation of Eq. (70) is therefore followed by its transpose

(|Ψn⟩)T(A − λnB) = 0, (85)

which, compared with the second equation of Eq. (70) yields the relation

⟨Ψ̃n | = |Ψn⟩T (86)

and hence,

⟨ψ̃n | = |ψn⟩T . (87)

The last relation is the standard one found in the literature;25–27,39 see Eq. (20).

VIII. EIGENSTATE EXPANSION OF THE GREEN’S FUNCTION

We now have 2N eigenstates in the 2N-dimensional space which are bi-orthogonal to each
other with a metric B. Using the eigenstates as bases, we will first expand the Green’s function in
the 2N-dimensional space. We will then map the expansion back into the N-dimensional space.

Equation (84) is followed by

U−1(A − λB)−1Ũ−1 = (Λ − λI2N)−1 (88)

or

(A − λB)−1 = U(Λ − λI2N)−1Ũ . (89)

This is the expansion of the Green’s function in the 2N-dimensional space.
Substituting Eq. (89) into Eq. (66) we have9

PG(E(λ))P = Geff(E(λ)) = −λ
(
IN 0

)
U(Λ − λI2N)−1Ũ *

,

0
IN

+
-

=

2N
n=1

P|ψn⟩ λλn
λ − λn

⟨ψ̃n |P, (90)

where we used expressions (80) and (81) in the last line. This is the result that we presented in
Eq. (24) above and was first given in Ref. 9 for a one-dimensional open quantum system. We stress
again that the expansion is given only by the eigenstates with point spectra. It is remarkable that
we do not have any background integrals. We also emphasize that this expansion is time-reversal
symmetric; the resonant and anti-resonant states contribute in a time-reversal symmetric way.

Appendix C shows that new expansion (90) leads to the expansion in our previous work
(Eqs. (4) and (56) in Ref. 38)

P(GR(E) + GA(E))P =
2N
n=1

P|φn⟩ 1
E − En

⟨φ̃n |P, (91)

where GR(E) and GA(E) are the retarded and advanced Green’s functions of the whole Hamilto-
nian,

GR/A(E) = 1
EI∞ − H ± iδ

(92)

with an infinitesimal δ. This is another piece of evidence that expansion (90) is time-reversal sym-
metric; it contains both the retarded and advanced components of the Green’s function. We will see
in Sec. XI that the retarded component is chosen when we consider the initial-condition problem,
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while the advanced component is chosen when we consider the terminal-condition problem. Inci-
dentally, we denoted in Eq. (91) the eigenstates by |φn⟩ intentionally because its normalization is
different from the one of |ψn⟩ in Eq. (90) as follows:

|φn⟩ =


1 − λn2|ψn⟩, (93)

⟨φ̃n | =


1 − λn2⟨ψ̃n |; (94)

see Appendix D for the derivation.
Although expansion (90) is done in the P subspace, we can always relate the eigenstates in the

P subspace with those in the Q subspace as shown in Eqs. (42) and (43). More specifically, we can
utilize Eqs. (B2)–(B4) in order to obtain expansions outside the P subspace. For example, we have

QG(E(λ))P = Q
1

E −QHQ
QHPGeff(E(λ))

= −
2N
n=1


iα

tiα

 π

−π

dkiα
2π

Q|kiα⟩
√

2 sin kiα
E(λ) + 2 cos kiα

⟨di |ψn⟩ λλn
λ − λn

⟨ψ̃n |P, (95)

where we used expression (B24). We can thereby express the Green’s function in the whole space in
the form

G(E(λ))B 1
E(λ)I∞ − H

= Q
1

E(λ) −QHQ
Q

+

(
IN +Q

1
E(λ) −QHQ

QHP
)

Geff(E(λ))
(
IN + PHQ

1
E(λ) −QHQ

Q
)

=

iα

 π

−π

dkiα
2π

Q|kiα⟩ 1
E(λ) + 2 cos kiα

⟨kiα |Q

+

2N
n=1

*
,
IN −


iα

tiα

 π

−π

dkiα
2π

Q|kiα⟩
√

2 sin kiα
E(λ) + 2 cos kiα

⟨di |P+
-

×
(
P|ψn⟩ λλn

λ − λn
⟨ψ̃n |P

)
× *
,
IN −


iα

tiα

 π

−π

dkiα
2π

P|di⟩
√

2 sin kiα
E(λ) + 2 cos kiα

⟨kiα |Q+
-
. (96)

The first term on the right-hand side is expansion (B19) of the Green’s function of the unperturbed
lead Hamiltonian in the Q subspace. The second term is an expansion of the contributions that
involve the P subspace.

Expansion (96) is different from conventional expansion (32) in the following two notable
points: (i) the second term is still written as a sum over all discrete eigenstates; (ii) the integrals
are taken over the unperturbed states and hence can be carried out rigorously for specific matrix
elements; see Sec. XIII, for example. The remarkable difference is due to the fact that we have
essentially factorized the P subspace from the Q subspace. Thanks to this factorization, expan-
sion (96) is given in terms of the perturbed states |ψn⟩ in the P subspace and the unperturbed states
|kiα⟩ in the Q subspace.

IX. NEW RESOLUTION OF UNITY

We now prove the new resolution of unity presented in Eq. (23). We begin the proof with the
conventional resolution of unity for the whole system, namely, Eq. (31). We can cast the right-hand
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side of Eq. (31) into the form

I∞ =
1

2πi


C1

1
EI∞ − H

dE, (97)

where the integration contour C1 is specified in Fig. 7(a).
We project Eq. (97) onto the P subspace, having

IN =
1

2πi


C1

P
1

EI∞ − H
PdE

=
1

2πi


C1

Geff(E)dE, (98)

where we used Eq. (37). We further transform this integral over E to an integral over λ, which yields

IN =
1

2πi


C2

Geff(E(λ))
(
−1 +

1
λ2

)
dλ

=
1

2πi

2N
n=1


C2

P|ψn⟩ λn
λ − λn

⟨ψ̃n |P
(
−λ + 1

λ

)
dλ, (99)

where the integration contour C2 is specified in Fig. 7(c) and we used expansion (90) of the Green’s
function in the second line. We can indeed obtain the same expression by putting t = 0 in Eq. (105)
below in Sec. X.

The only pole that contributes to the contour C2 is the one at λ = 0. Since we circle around the
pole in the clockwise direction, we have

IN =
2N
n=1

P|ψn⟩⟨ψ̃n |P, (100)

which proves Eq. (23). It is again remarkable that this resolution of unity is free of any background
integrals. We also stress again that the summation contains the resonant and anti-resonant states in a
time-reversal symmetric way.

We can extend the argument to the resolution of unity in the whole space, I∞. Using the same
procedure for the Green’s function in the whole space, Eq. (96) or putting t = 0 in Eq. (107) below
in Sec. X we have

I∞ =
1

2πi


C1

dE Q
1

E −QHQ
Q

+

2N
n=1

1
2πi


C2

dλ
(
−λ + 1

λ

)
×

(
IN +Q

1
E(λ) −QHQ

QHP
)

×
(
P|ψn⟩ λn

λ − λn
⟨ψ̃n |P

)
×

(
IN + PHQ

1
E(λ) −QHQ

Q
)
. (101)

In the second term on the right-hand side, the poles that appear in addition to the ones in Eq. (99)
are at λ = e±ikiα as can be read off from Eq. (95). These poles are on the unit circle in the complex
λ plane, and hence do not contribute to the integral along the contour C2. Only the contribution due
to the pole at λ = 0 remains again, which gives the same expansion as Eq. (100). The first term, on
the other hand, gives the resolution of unity in the Q subspace, which can be written in terms of
the scattering eigenstates |kiα⟩ of the unperturbed Hamiltonian QHQ, and hence can be generally
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carried out for specific matrix elements. We therefore arrive at

I∞ =
2N
n=1

P|ψn⟩⟨ψ̃n|P +

iα

 π

−π

dkiα
2π

Q|kiα⟩⟨kiα |Q, (102)

which is Eq. (34).
To summarize this section, we have expressed the unit operator in terms of the perturbed

discrete eigenstates on the dot and the unperturbed eigenstates on the lead; this is the critical
difference of Eq. (102) from the conventional resolution of unity, Eq. (31) as we emphasized above.

X. EIGENSTATE EXPANSION OF THE TIME-EVOLUTION OPERATOR

In the present section, we show the expansion of the time-evolution operator exp(−iHt) only
with respect to the eigenstates with point spectra, without any background integrals. We first cast the
time-evolution operator into the integral form

e−iH t =
1

2πi


C1

e−iEt 1
EI∞ − H

dE, (103)

where the integration contour C1 is again specified in Fig. 7(a).
We then consider the operator in the P subspace, having

Pe−iHtP =
1

2πi


C1

e−iEtP
1

EI∞ − H
PdE

=
1

2πi


C1

e−iEtGeff(E)dE. (104)

Following the same transformation from Eq. (98) to Eq. (99) we have

Pe−iHtP =
1

2πi

2N
n=1


C2

exp

i
(
λ +

1
λ

)
t


P|ψn⟩ λn
λ − λn

⟨ψ̃n |P
(
−λ + 1

λ

)
dλ, (105)

where the integration contour C2 is again specified in Fig. 7(c). This is the result that we presented in
Eq. (25) above. We will calculate the matrix element explicitly in Sec. XI. We will then see that the
time-reversal symmetry is broken upon choosing t > 0 or t < 0.

The time-evolution operator in the other subspaces can be obtained from Eqs. (B2)–(B4). For
example, we have

Qe−iHtP =
1

2πi


C1

e−iEtQ
1

EI∞ − H
PdE

=
1

2πi


C1

e−iEtQ
1

E −QHQ
QHPGeff(E)dE

=
1

2πi

2N
n=1


C2

dλ
(
−λ + 1

λ

)
exp


i
(
λ +

1
λ

)
t



iα

 π

−π

dkiα
2π

Q|kiα⟩ −
√

2tiα sin kiα
E(λ) + 2 cos kiα

⟨di |ψn⟩ λn
λ − λn

⟨ψn |P, (106)

where we used Eq. (B24) in the transformation from the second line to the third. The time-evolution
operator in the whole space is therefore expressed in the form

e−iHt =
1

2πi


C2

dλ
(
−1 +

1
λ2

)
exp


i
(
λ +

1
λ

)
t



iα

 π

−π

dkiα
2π

Q|kiα⟩ 1
E(λ) + 2 cos kiα

⟨kiα |Q
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+
1

2πi

2N
n=1


C2

dλ
(
−λ + 1

λ

)
exp


i
(
λ +

1
λ

)
t


× *
,
IN −


iα

tiα

 π

−π

dkiα
2π

Q|kiα⟩
√

2 sin kiα
E(λ) + 2 cos kiα

⟨di |P+
-

×
(
P|ψn⟩ λn

λ − λn
⟨ψ̃n|P

)
× *
,
IN −


iα

tiα

 π

−π

dkiα
2π

P|di⟩
√

2 sin kiα
E(λ) + 2 cos kiα

⟨kiα |Q+
-
. (107)

Once again, the integrals on the right-hand side are taken over the unperturbed scattering eigenstates
in the Q subspace and hence can be carried out rigorously, whereas the contributions involving the P
subspace are given by a sum over all discrete eigenstates in a time-reversal symmetric way.

XI. TIME EVOLUTION OF A DOT STATE: SURVIVAL AMPLITUDE

We here compute the survival amplitude and more generally the matrix element

⟨d j |e−iHt|di⟩, (108)

using Eq. (105). We will show that for t > 0, this has exponentially decaying terms due to the
resonant states, oscillatory terms due to the bound and anti-bound states and power-law decaying
terms due to integrals. We stress that the integrals are not background integrals but do appear in
the coefficients of the resonant-state expansion. For t < 0, the exponentially decaying terms are
replaced by the exponentially growing terms due to the anti-resonant states. This is exactly where
the time-reversal symmetry is broken for the first time in the sense that we have to take contributions
of resonant-state poles for t > 0 and those of anti-resonant-state poles for t < 0; we will discuss this
point further at the end of the present section.

We compute Eq. (108) from Eq. (105) in the form

⟨d j |e−iHt|di⟩ = 1
2πi

2N
n=1


C2

exp

i
(
λ +

1
λ

)
t

⟨d j |ψn⟩ λn

λ − λn
⟨ψ̃n |di⟩

(
−λ + 1

λ

)
dλ. (109)

The integration has two essential singularities because of the exponential factor in the integrand,
one at λ = 0 and the other at λ = ∞. In order to avoid the contributions from the essential singu-
larities, we have to modify the contour C2 in the ways specified in Figs. 8(a) and 8(b) for t > 0
and t < 0, respectively, and thereby taking different poles in the complex λ plane. This is where
the time-reversal symmetry of the expansion is broken for the first time. We can thus pinpoint the
occurrence of the time-reversal symmetry breaking. By the time-reversal symmetry breaking, we
mean here that for t > 0 the integration contour includes the poles of Green’s function only in the
upper half λ plane (the lower half energy plane) and for t < 0 only those in the lower half λ plane
(the upper half energy plane).

For t > 0, the half-circle part of the contour C2+ far away from the origin vanishes because
the imaginary part of λ diverges positively in the exponent while the imaginary part of 1/λ van-
ishes negatively. On the other hand, the small half-circle part of the contour around the essential
singularity at the origin λ = 0 also vanishes because the imaginary part of 1/λ diverges positively in
the exponent while the imaginary part of λ vanishes negatively. We thereby eliminate the contribu-
tions from the two essential singularities at λ = 0 and λ = ∞. Therefore, we have the contributions
from all the resonant-state poles λn in the upper half plane, the half-circle contributions from all
bound and anti-bound states on the real axis, and the principal part of the integration over the real
axis
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FIG. 8. The contours for integration (109): (a) the contour C2+ for t > 0; (b) the contour C2− for t < 0.

⟨d j |e−iHt|di⟩
=


n∈res.

e−iEnt⟨d j |ψn⟩⟨ψ̃n |di⟩λn(−2i sin kn) (110)

+
1
2


n∈bound

n∈anti-bound

e−iEnt⟨d j |ψn⟩⟨ψ̃n |di⟩λn(−2i sin kn) (111)

− 1
2πi

2N
n=1

P
 ∞

−∞
dλ exp


i
(
λ +

1
λ

)
t

⟨d j |ψn⟩ λn

λ − λn
⟨ψ̃n|di⟩

(
−λ + 1

λ

)
. (112)

Note that each term in the first line (110) exponentially decays in time because the summation is
restricted to the resonant states, whereas each term in second line (111) oscillates in time because
the summation is restricted to the states with real eigenvalues.

Let us evaluate each integration in the third line (112) in the saddle-point approximation, which
will produce the power law t−3/2. The saddle points of the exponent it(λ + 1/λ) are at λ = ±1, which
correspond to the band edges E = ∓2 in Fig. 5(a). Indeed, the band edges are branch points in the
complex E plane, which are known to produce non-Markovian dynamics without a characteristic
time scale and hence cause a power-law decay in the long-time limit.59 The saddle points of the
integral in Eq. (112) always correspond to the band edges because these are the minimum and
maximum values of the energy E(λ) = −(λ + λ−1), for which dE/dλ = 0.

We can expand the exponent around each saddle point in the form

it
(
λ +

1
λ

)
= ±2it ± it(λ ∓ 1)2 + O

�(λ ∓ 1)3� , (113)

where the upper signs correspond to the lower band edge E = −2 and the lower ones to the upper
band edge E = +2. We can convert the exponential function in line (112) into the Gaussian form
e−s

2
by choosing a new integration variable s around each saddle point in the form

s =
√
∓it(λ ∓ 1) = e∓iπ/4√t(λ ∓ 1), (114)

or by rotating the integration contour around the saddle points as shown in Fig. 9. This is legitimate
only when the range of the Gaussian function, which is ∼1/

√
t, is narrow enough not to include any

bound or anti-bound states. In other words, the evaluation here is correct in a long time scale or if
any bound or anti-bound states are not close to the band edges. It may not be correct in a shorter
time scale or when a bound or anti-bound state approaches a band edge, which was indeed observed
in Ref. 60.

Coming back to the saddle-point approximation, we can approximate the integrand in term
(112) around the two saddle points as
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FIG. 9. The rotation of the integration contour around the saddle points λ = ±1.

exp

i
(
λ +

1
λ

)
t

λn

λ − λn

(
−λ + 1

λ

)
= − λne−s

2

(λn ∓ 1) − e±iπ/4s/
√

t

(
−2e±iπ/4 s

√
t
+ O(s2)

)
=

2e±iπ/4λn

λn ∓ 1

(
1 +

e±iπ/4

λn ∓ 1
s
√

t

)
s
√

t
e−s

2
+ O(s3e−s

2). (115)

in the long-time limit t → ∞. Because the integral of se−s
2

vanishes, the greatest contribution in the
long-time limit comes from

e±2it 2e±iπ/4λn

λn ∓ 1
e±iπ/4

λn ∓ 1

 ∞

−∞
e−s

2
(

s
√

t

)2 ds

e∓iπ/4
√

t

= e±2it
√
πe±3iπ/4

t3/2

λn

(λn ∓ 1)2

= −e±2it
√
πe±3iπ/4

t3/2

1
En ± 2

. (116)

We thereby summarize terms (110)–(112) as

⟨d j |e−iHt|di⟩
= −


n∈res.

e−iEnt⟨d j |ψn⟩⟨ψ̃n |di⟩2ieikn sin kn (117)

− 1
2


n∈bound

n∈anti-bound

e−iEnt⟨d j |ψn⟩⟨ψ̃n |di⟩2ieikn sin kn (118)

+
1

t3/2

2N
n=1


σ=±1

e2σit

√
πe3σiπ/4

2πi
⟨d j |ψn⟩⟨ψ̃n |di⟩ 1

2σ + En
(119)

in the long-time limit t → ∞, where σ = 1 indicates the contribution from the lower band edge
E = −2 and σ = −1 from the upper band edge E = +2. We thus have exponentially decaying
terms, oscillatory terms and power-law decaying terms. The exponent 3/2 of the power-law decay
coincides with the one given in Ref. 60 for the long-time limit.

Finally, for t < 0, we modify the contour C2 into the one in Fig. 8(b). The contributions from
the half-circle contour far away from the origin as well as the ones close to the origin vanish. We
thus eliminate the contributions from the two essential singularities again. We therefore have the
contributions from all the anti-resonant states this time instead of the resonant states. Employing the
same argument as above, we end up with

⟨d j |e−iHt|di⟩
= −


n∈anti-res.

e−iEnt⟨d j |ψn⟩⟨ψ̃n |di⟩2ieikn sin kn (120)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  159.242.208.194 On: Wed, 21 Oct 2015 21:36:37



122106-23 N. Hatano and G. Ordonez J. Math. Phys. 55, 122106 (2014)

− 1
2


n∈bound

n∈anti-bound

e−iEnt⟨d j |ψn⟩⟨ψ̃n |di⟩2ieikn sin kn (121)

− 1
t3/2

2N
n=1


σ=±1

e2σit

√
πe3σiπ/4

2πi
⟨d j |ψn⟩⟨ψ̃n |di⟩ 1

2σ + En
(122)

in the long-time limit t → −∞.
An advantage in the present framework of computing the survival probability is that we can

clearly see which contribution produces which time dependence; the resonant and anti-resonant
states cause the exponentially decaying and growing terms, respectively, the bound and anti-bound
states cause the oscillatory terms, and the branch points cause the power-law terms.

We again stress that choosing t > 0 or t < 0 breaks the time-reversal symmetry in the sense
that we have to take different poles for t > 0 and t < 0; to be able to pinpoint the instance of
time-reversal symmetry breaking is another advantage of the present framework.

The two cases of t > 0 and t < 0 above correspond to the initial condition problem and the
terminal condition problem for the Schrödinger equation, respectively. The computation of the
time-evolution operator is equivalent to integrating the Schrödinger equation. Since the Schrödinger
equation is a first-order differential equation with respect to time, we need to specify one boundary
condition in order to obtain a physical solution. The boundary condition in time can be either the
initial condition or the terminal condition. In the initial-condition problem, we seek a solution for
positive times after the initial condition. This is equivalent to computing the time evolution operator
for t > 0 and applying it to an initial ket vector. In the terminal-condition problem, on the other
hand, we seek a solution for negative times before the terminal condition. This is equivalent to
computing the time evolution operator for t < 0 and applying it to a final bra vector. In short,
choosing t > 0 or t < 0, respectively, corresponds to setting the boundary condition either as the
initial condition or the terminal condition, and thereby breaks the time-reversal symmetry between
the decaying resonant states and the growing anti-resonant states. This view is to some extent shared
by Peierls61 and Price.62

We will discuss the time-reversal symmetry breaking more quantitatively in Sec. XIII. We will
show that the broken symmetry between the resonant states and the anti-resonant states becomes
exact only in the case in which the boundary condition (the initial and terminal conditions) itself is
time-reversal symmetric. We will demonstrate that without the symmetry of the boundary condition,
we can even see pole contributions of growing anti-resonant states in the time-evolution from an
initial condition.

XII. TIME EVOLUTION OF A DOT STATE: ESCAPING AMPLITUDE

We next compute the escaping amplitude from a dot state, ⟨k jβ |e−iHt|di⟩ and ⟨x jβ |e−iHt|di⟩. We
will show that there is an additional oscillatory term in the former matrix element due to the plane
wave |k jβ⟩.

For the calculation of the matrix element ⟨k jβ |e−iHt|di⟩, we use Eq. (106) to have

⟨k jβ |e−iHt|di⟩ = 1
2πi

2N
n=1


C2

exp

i
(
λ +

1
λ

)
t


×
−
√

2t jβ sin k jβ

E(λ) + 2 cos k jβ
⟨d j |ψn⟩ λn

λ − λn
⟨ψ̃n |di⟩

(
−λ + 1

λ

)
dλ

=
1

2πi
t jβ√

2i

2N
n=1


C2

exp

i
(
λ +

1
λ

)
t


×
(

λ

λ − eik jβ
− λ

λ − e−ik jβ

)
⟨d j |ψn⟩ λn

λ − λn
⟨ψ̃n |di⟩

(
−λ + 1

λ

)
dλ. (123)
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We therefore have an additional pole contribution from either λ = eik jβ or e−ik jβ in the integration
over λ. Let us assume k jβ > 0, which means an out-going wave. The pole λ = eik jβ is on the upper
half of the unit circle |λ| = 1 and the other pole λ = e−ik jβ on the lower half. The former contributes
for t > 0 and the latter contributes for t < 0.

For t > 0, we therefore have

⟨k jβ |e−iHt|di⟩ (124)

=
√

2t jβ sin k jβ


n:res

e−iEnt
2iλn sin kn

En + 2 cos k jβ
⟨d j |ψn⟩⟨ψ̃n |di⟩ (125)

+
1
√

2
t jβ sin k jβ


n:b,ab

e−iEnt
2iλn sin kn

En + 2 cos k jβ
⟨d j |ψn⟩⟨ψ̃n|di⟩ (126)

−
√

2t jβ sin k jβ

2N
n=1

e2it cos k jβ eik jβλn
eik jβ − λn

⟨d j |ψn⟩⟨ψ̃n|di⟩ (127)

− 1
2πi

√
2t jβ sin k jβ

2N
n=1

P
 ∞

−∞
exp


i
(
λ +

1
λ

)
t


(127)

× 1
λ + 1/λ − 2 cos k jβ

⟨d j |ψn⟩ λn
λ − λn

⟨ψ̃n |di⟩
(
−λ + 1

λ

)
dλ. (128)

We evaluate the integral in the last line (128) again in the saddle-point approximation. After the
transformation to the new integration variable in Eq. (114), the integrand takes the form

exp

i
(
λ +

1
λ

)
t


1
λ + 1/λ − 2 cos k jβ

λn

λ − λn

(
−λ + 1

λ

)
=

e−s
2

±2 − 2 cos k jβ + O(s2)
×


2e±iπ/4λn

λn ∓ 1

(
1 +

e±iπ/4

λn ∓ 1
s
√

t

)
s
√

t
+ O(s3)


(129)

in the long-time limit t → ∞. The greatest contribution is similar to Eq. (116)

− 1
±2 − 2 cos k jβ

√
πe±3iπ/4

t3/2

1
En ± 2

. (130)

We thereby summarize all lines as

⟨k jβ |e−iHt|di⟩ =
√

2t jβ sin k jβ (131)

×



n:res

e−iEnt
2ieikn sin kn

En + 2 cos k jβ
⟨d j |ψn⟩⟨ψ̃n |di⟩ (132)

+
1
2


n:b,ab

e−iEnt
2ieikn sin kn

En + 2 cos k jβ
⟨d j |ψn⟩⟨ψ̃n |di⟩ (133)

−
2N
n=1

e2it cos k jβ eik jβeikn

eik jβ − eikn
⟨d j |ψn⟩⟨ψ̃n |di⟩ (134)

+
1

t3/2

2N
n=1


σ=±1

e2σit

√
πe3σiπ/4

2πi
⟨d j |ψn⟩⟨ψ̃n|di⟩ 1

2σ − 2 cos k jβ

1
2σ + En


(135)

in the long-time limit t → ∞. For t < 0, we similarly have

⟨k jβ |e−iHt|di⟩ =
√

2t jβ sin k jβ (136)

×



n:ar

e−iEnt
2ieikn sin kn

En + 2 cos k jβ
⟨d j |ψn⟩⟨ψ̃n|di⟩ (137)
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+
1
2


n:b,ab

e−iEnt
2ieikn sin kn

En + 2 cos k jβ
⟨d j |ψn⟩⟨ψ̃n |di⟩ (138)

−
2N
n=1

e2it cos k jβ e−ik jβeikn

e−ik jβ − eikn
⟨d j |ψn⟩⟨ψ̃n |di⟩ (139)

− 1
t3/2

2N
n=1


σ=±1

e2σit

√
πe3σiπ/4

2πi
⟨d j |ψn⟩⟨ψ̃n|di⟩ 1

2σ − 2 cos k jβ

1
En + 2σ


(140)

in the long-time limit t → −∞. Terms (132) and (137) decay and grow exponentially, respectively,
terms (133) and (138) oscillate in time, and terms (135) and (140) decay as t−3/2, which were also
present in survival amplitudes (117)–(122). Terms (134) and (139) are the additional oscillatory
terms due to the plane wave |k jβ⟩.

For the calculation of the matrix element ⟨x jβ |e−iHt|di⟩, we use Eq. (123) to have

⟨x jβ |e−iHt|di⟩ =
 π

−π

dk jβ

2π
⟨x jβ |k jβ⟩⟨k jβ |e−iHt|di⟩

=
1

2πi
t jβ
i

2N
n=1


C2

dλ
(
−λ + 1

λ

)
exp


i
(
λ +

1
λ

)
t


× ⟨d j |ψn⟩ λn
λ − λn

⟨ψ̃n |di⟩

×
 π

−π

dk jβ

2π
sin(k jβx jβ)

(
λ

λ − eik jβ
− λ

λ − e−ik jβ

)
, (141)

where we used ⟨x jβ |k jβ⟩ =
√

2 sin(k jβx jβ) in Eq. (B18). We can easily carry out the integral with
respect to k jβ by changing the integration variable to λ0 = eik jβ π

−π

dk jβ

2π
sin(k jβx jβ)

(
λ

λ − eik jβ
− λ

λ − e−ik jβ

)
=


C0

dλ0

2πiλ0

λ0
x − λ0

−x

2i
*
,

λ

λ − λ0
− λ

λ − λ−1
0

+
-
, (142)

where C0 is the contour of the counterclockwise unit circle and we left out the subscript of x jβ for
brevity. Since λ runs on the contour C2 specified in Fig. 7(c), which is inside C0 in the complex λ0

plane, the pole at λ0 = λ is inside the unit circle but the one at λ0 = λ
−1 is outside it. For evaluating

the term λ0
x in Eq. (142), we take the pole λ0 = λ, while for the term λ0

−x, we take the pole λ0 = λ
−1

because x ≥ 1, each of which yields the residue iλx/2. Equation (142) therefore reduces to iλx,
which gives the following simplified form of matrix element (141):

⟨x jβ |e−iHt|di⟩ = t jβ
2πi

2N
n=1


C2

exp

i
(
λ +

1
λ

)
t

⟨d j |ψn⟩ λn

λ − λn
⟨ψ̃n |di⟩

(
−λ + 1

λ

)
λ
x jβdλ. (143)

This is indeed the same as Eq. (109) except for the factor t jβλx jβ, which is consistent with
Eq. (B26). Since the factor λx reduces to σx in saddle-point approximations (113)–(116), we
accordingly modify Eqs. (117)–(122) to have

⟨x jβ |e−iHt|di⟩
= −t jβ


n∈res.

e−iEnt⟨d j |ψn⟩⟨ψ̃n |di⟩2ieikn(x jβ+1) sin kn (144)

−
t jβ
2


n∈bound

n∈anti-bound

e−iEnt⟨d j |ψn⟩⟨ψ̃n |di⟩2ieikn(x jβ+1) sin kn (145)

+
t jβ
t3/2

2N
n=1


σ=±1

e2σit

√
πe3σiπ/4

2πi
⟨d j |ψn⟩⟨ψ̃n |di⟩ σx jβ

2σ + En
(146)
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in the limit t → ∞ and

⟨x jβ |e−iHt|di⟩
= −t jβ


n∈anti-res.

e−iEnt⟨d j |ψn⟩⟨ψ̃n |di⟩2ieikn(x jβ+1) sin kn (147)

−
t jβ
2


n∈bound

n∈anti-bound

e−iEnt⟨d j |ψn⟩⟨ψ̃n|di⟩2ieikn(x jβ+1) sin kn (148)

−
t jβ
t3/2

2N
n=1


σ=±1

e2σit

√
πe3σiπ/4

2πi
⟨d j |ψn⟩⟨ψ̃n |di⟩ σx jβ

2σ + En
(149)

in the limit t → −∞.

XIII. TIME-REVERSAL SYMMETRY BREAKING AND GROWTH FROM THE
INITIAL CONDITION

We have shown in Secs. XI and XII that: (i) for the time evolution from the initial condition,
the resonant states contribute, giving decays; (ii) for the time evolution to the terminal condition, the
anti-resonant states contribute, giving growths. One may then pose the following question. Suppose
that we trace back the time evolution from a terminal condition |ψ(0)⟩ to a moment in the past,
t = −t0 < 0, and find a state |ψ(−t0)⟩. The time evolution from this new initial condition |ψ(−t0)⟩
then must be a growth into the state |ψ(0)⟩. This would seem to contradict the above statement.

The answer to the question is as follows. The above statement exactly applies only to the case
in which the boundary condition chosen as the initial and terminal condition is time-reversal sym-
metric. Because we go back in time from the state |ψ(0)⟩, the state |ψ(−t0)⟩ consists of anti-resonant
states of exponentially large amplitudes and resonant states of exponentially small amplitudes. In
other words, it is not a time-reversal symmetric state but an asymmetric state which was engi-
neered so that it may be dominated by anti-resonant states. This is why the anti-resonant states
give exponentially growing contributions to the time evolution from the initial condition |ψ(−t0)⟩.
Mathematically, these contributions are originated when we perform an integration over k jβ in
terms such as Eqs. (134) and (139) with a suitable function of k jβ. We will show this explicitly in
the present section.

Consider the survival amplitude (108) ⟨d j |e−iHt|di⟩, again with t > 0. According to expansion
(109), we have terms of the form

⟨d j |e−iHt|di⟩ =
2N
n=1

pn⟨d j |ψn⟩⟨ψ̃n |di⟩ (150)

with appropriate numbers {pn}. We showed in Sec. XI that for t > 0, the contributions of the
resonant-state poles take over and the contributions of the anti-resonant-state poles vanish in the
summation.

Let us then take the time reversal (the complex conjugate) of Eq. (150). Noting that the
Hamiltonian is a real matrix because of the time-reversal symmetry, we have

⟨d j |e−iH (−t)|di⟩ = ⟨d j |e−iHt|di⟩∗

=

2N
n=1

pn
∗⟨d j |ψn⟩∗⟨ψ̃n |di⟩∗

=

2N
n=1

pn̄⟨d j |ψn̄⟩⟨ψ̃n̄|di⟩, (151)

where ψn̄ is the corresponding anti-resonant state if ψn is a resonant state; we used Eq. (19) here.
We showed in Sec. XI too that for (−t) < 0, the contributions of the anti-resonant-state poles take
over instead of the resonant-state poles. In particular, Eq. (151) indicates that if one resonant state
has a specific contribution in Eq. (150) the corresponding anti-resonant state has a contribution of
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the same magnitude in Eq. (151). Note that this is because the initial and terminal conditions are
time-reversal symmetric states: |di⟩∗ = |di⟩ and ⟨d j |∗ = ⟨d j |.

In other words, if we choose a time-reversal symmetric state as initial and terminal conditions,
the following statement becomes exact: the initial-condition problem features only the decaying
states while the terminal-condition problem features the growing states, and the solutions are time
reversal to each other.

An amendment to this statement is in order if we choose a time-reversal asymmetric state as the
initial condition. We will show in the following that if we choose a specifically engineered state for
the initial condition, we can even observe anti-resonant contributions in the time evolution from it.

The basic argument is as follows. Consider an initial state where the particle is located at a
site di. This state evolves as |ψ(t)⟩ = e−iH t |di⟩. Say that at t = t0 > 0, we perform a time inver-
sion to obtain the state |ψ(−t0)⟩ = eiH t0|di⟩. The time inversion can be obtained by reversing the
velocity of the particle. We can alternatively regard this state as the solution at t = −t0 of the
terminal-condition problem. We will hereafter take the state |ψ(−t0)⟩ as a new initial state and
consider its time evolution from it. In other words, we use a time-reversal asymmetric initial
condition: |ψ(−t0)⟩ , |ψ(−t0)⟩∗.

Specifically, we will consider the “T-shaped” quantum dot model shown in Fig. 10 and compute
the amplitude ⟨x2R|e−iHt|ψ(−t0)⟩ that the particle is found on the right lead x2R for t > 0 as it is being
absorbed by the dot site d1. As we argue now, this amplitude in fact contains contributions growing
exponentially for t > 0 due to the anti-resonant states. Indeed, we have

⟨x2R|e−iHt|ψ(−t0)⟩ = ⟨x2R|e−iHteiHt0|d1⟩
= ⟨x2R|e−iH (t−t0)|d1⟩. (152)

As discussed in Sec. XII, when time t in the amplitude ⟨x2R|e−iHt|d1⟩ is negative, the anti-resonant
states give contributions that grow exponentially in the form exp(−iEart) with Im Ear > 0 as t in-
creases. In the amplitude of Eq. (152), this occurs for t < t0. Therefore, even though we have t > 0,
the anti-resonant states give exponentially growing contributions to this amplitude until t = t0.

For comparison, let us first compute the escaping probability
�⟨x2R|e−iHt|d1⟩�2 (153)

for the T-shaped model, using Eq. (143). The model, in an appropriate parameter region, has only
one resonant state and one anti-resonant state forming a complex-conjugate pair, along with two
bound states. We show in Fig. 11(a) a numerical evaluation of both the resonant-state contribution
λn = λres and the anti-resonant-state contribution λn = λar to the amplitude in Eq. (143). We see that
for t > 0, the resonant-state contribution is far greater than the anti-resonant-state contribution. The
resonant-state contribution forms most of the wave packet emitted from the dot site d1. As time
increases, the wave packet shifts in the positive x2R direction away from the dot site d1 and the
contact site d2 at x2R = 0. For any given specific location through which the wave packet passes,
there is a time period during which the amplitude decreases exponentially; this is directly related to
the exponential shape of the wave packet shown in Fig. 11 and corresponds to the exponential decay
due to the resonant-state pole.

FIG. 10. The T-shaped quantum dot model. The P subspace is a two-dimensional space formed by the two sites d1 and
d2 encircled by the circle, and therefore, the model has four discrete eigenvalues. The site d1 is not connected to any leads
directly, while the site d2 is connected to two leads, which we refer to as x2R and x2L. In some parameter regions, there are
two bound states, a resonant state and the corresponding anti-resonant state. For the numerical demonstration here, we chose
the parameter values at t12 = t21 = t2R = t2L = 1, ε1 = −0.85, and ε2 = 0.
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FIG. 11. (a) Resonant and anti-resonant pole contributions to escaping probability (153) for t = 15 (dashed lines) and t = 30
(solid lines). The wave packet was emitted from the dot site d1 at time t = 0 and moves to the right as time t increases. The
resonant-state contributions are the blue lines (larger peaks) and the anti-resonant-state contributions are the red lines (smaller
peaks). (b) Resonant and anti-resonant pole contributions to probability (154) with t0 = 30 for t = 0 (dashed lines) and t = 15
(solid lines). As time t increases, both wave packets move to the left towards the contact site d2 at x2R = 0. The resonant-state
contributions are the blue lines (smaller peaks) and the anti-resonant-state contributions are the red lines (larger peaks). For
the parameter values specified in Fig. 10 we have the resonant and anti-resonant poles at λres = 0.502834 − 1.21680i and
λar = 0.502834 + 1.21680i, respectively.

In contrast, in the probability
�⟨x2R|e−iHt|ψ(−t0)⟩�2 (154)

for the time-inverted state |ψ(−t0)⟩ = e+iHt0|d1⟩, the roles of the resonant-state and anti-resonant-
state contributions are exchanged as shown in Fig. 11(b). The wave packet now moves in the
negative x2R direction towards the contact site d2 at x2R = 0. As the wave packet passes through
a given location on the lead, the amplitude grows exponentially. All exponential growth stops at
t = t0 when the wave packet has been absorbed by the dot site d1. Subsequently, the wave packet is
re-emitted as shown in Fig. 11(a).

XIV. RESONANT SCATTERING OF A WAVE PACKET

In the present section, we describe time-reversal symmetry breaking in resonant scattering of a
wave packet. At t = 0, we specify a time-reversal symmetric wave packet located on a lead. We will
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show that again time-reversal symmetry is broken depending on whether we regard the wave packet
at t = 0 as either a terminal or an initial condition. We will again consider the T-shaped quantum dot
model described in Sec. XIII.

At t = 0, we have a Gaussian wave packet (Fig. 12) on the left lead x2L given by

⟨x2β |ϕ(0)⟩ = δβ,LAe−(x2L−x0)2/σ2
ei x2Lk0θ(x2L), (155)

where A is the normalization constant, x0 is the location of the peak, σ is the width, k0 is the initial
momentum, and θ(x) is the step function equal to 1 for x ≥ 1 and 0 otherwise. We will consider the
case k0 = 0, for which the wave packet is time-reversal symmetric.

The wave packet evolves as

⟨x2β |ϕ(t)⟩ =
∞

x′2L=1

⟨x2β |e−iHt|x ′2L⟩⟨x ′2L|ϕ(0)⟩. (156)

In order to isolate the contribution from each discrete eigenvalue (the point spectra) of the Hamilto-
nian, we will decompose the transition amplitude ⟨x2β |e−iHt|x ′2L⟩ into the following terms:

⟨x2β |e−iHt|x ′2L⟩ = ⟨x2β |e−iHt|x ′2L⟩0 +

2N
n=1

⟨x2β |e−iHt|x ′2L⟩n, (157)

where the first term is the free time-evolution (involving only the left lead, not the dot), correspond-
ing to the first term in the right-hand side of Eq. (107) whereas the other terms correspond to the
states with n = 1,2, . . . ,2N in Eq. (107). The free-evolving term is only non-zero when x2β is on the
left lead (β = L) and is given by

⟨x2β |e−iHt|x ′2L⟩0 = δβ,L

 π

−π

dk
2π

2 sin(k x2β) sin(k x ′2L)e2it cos k . (158)

The other terms are given by

⟨x2β |e−iHt|x ′2L⟩n =
1

2πi


C2

exp

i
(
λ +

1
λ

)
t
 (
−λ + 1

λ

)
×
 π

−π

dk2β

2π

 π

−π

dk ′2L

2π
2 sin(k2βx2β) sin(k ′2Lx ′2L)

×
−
√

2t2β sin k2β

E(λ) + 2 cos k2β
⟨d2|ψn⟩ λn

λ − λn
⟨ψ̃n |d2⟩

−
√

2t2L sin k ′2L

E(λ) + 2 cos k ′2L
dλ.

FIG. 12. Gaussian wave packet |⟨x |ϕ(t)⟩|2 at t = 0 for the T-shaped model of Fig. 10. In this figure as well as in Fig. 13, the
positions x2L on the left lead are represented by negative values of x = −x2L, while the positions x2R on the right lead by
positive x = x2R. The contact site d2 is at x = 0.
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(159)

We can evaluate the integrals over k2β and k ′2L similarly to Eq. (143) as follows:

⟨x2β |e−iHt|x ′2L⟩n =
1

2πi


C2

exp

i
(
λ +

1
λ

)
t
 (
−λ + 1

λ

)
λ
(x2β+x

′
2L)

× ⟨d2|ψn⟩ λn
λ − λn

⟨ψ̃n |d2⟩ dλ. (160)

Note that this expression is independent of the lead (β = L or β = R). Therefore the n compo-
nents of the transition amplitude (with n , 0) are symmetric around the dot site d1; they are either
incoming or outgoing scattered wave packets.

We show in Fig. 13 the components of the wave packets

⟨x2β |ϕ(t)⟩n ≡

x′2L

⟨x2β |e−iHt|x ′2L⟩n⟨x ′2L|ϕ(0)⟩ (161)

at different times. The negative times represent the time evolution towards terminal condition (155)
at t = 0. The positive times represent the time evolution starting at t = 0, which is now regarded as
an initial condition.

The free time-evolution for t > 0 is as follows (see Figs. 13(e)–13(h)). At t = 0, the free wave
packet of the initial condition in Fig. 12 starts spreading out in both left and right directions as
t increases (Fig. 13(e)). The right-hand side of the wave packet is then reflected by the dot site
at x = 0, producing interference with the portion of the wave packet that is not reflected yet (Fig.
13(f)). The interference pattern further continues to spread towards negative x as shown in Figs.
13(g) and 13(h).

The free time-evolution for t < 0 towards t = 0 is the exact inverse process; see Figs.
13(a)–13(d). Starting with the interference pattern, the portion of reflected wave packet moves
towards the dot site at x = 0 as in Figs. 13(a)–13(c), bounces off the dot, forms a spread Gaussian
wave packet in Fig. 13(d), and ends up with the wave packet of the terminal condition in Fig. 12 at
t = 0.

Out of the other contributions to the time evolution, the anti-resonant-state contribution domi-
nates for t < 0 (small (red) wave packets) and the resonant-state contribution dominates for t > 0
(small (green) wave packets). Note that both the resonant and anti-resonant wave packets obey
causality. For example, for t > 0, the resonant wave packets only appear after the incident wave
packet reaches the dot site d1 (within the quantum uncertainty), because the wave packet needs to be
absorbed by the quantum dot before emission can occur. Similarly, the anti-resonant wave packets
exist only before the dot site d1 ejects the reflected portion of the free wave packet to form the
Gaussian wave packet at t = 0.

XV. SUMMARY AND DISCUSSION

We presented a new resolution of unity for a class of tight-binding open quantum systems and
used it for expansions of the Green’s function and the time evolution operator. All of our expansions
in the P subspace are expressed in terms of the discrete states (the states with point spectra), not
containing integrals over the continuum states (the states with a continuum spectrum). Although
they contain integrals over the continuum states outside the P subspace, the integrations are taken
over unperturbed states. This makes possible to factor out the expansion in the P subspace and to
keep the form of the summation over all discrete states. Because of this feature of the expansion, we
can clearly see which contribution produces which time dependence in time evolution; the resonant
states cause exponential decay, the anti-resonant states cause exponentially growth, the bound and
anti-bound states cause oscillations, and the branch points cause power-law decay.

The most remarkable feature of the present expansions is that they observe the time-reversal
symmetry because the resonant and anti-resonant states always come into the expansions as a pair.
The time-reversal symmetry is broken only as we try to compute matrix elements specifying the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  159.242.208.194 On: Wed, 21 Oct 2015 21:36:37



122106-31 N. Hatano and G. Ordonez J. Math. Phys. 55, 122106 (2014)

FIG. 13. We here show dominant components of the time-evolved wave packet of Fig. 12 at eight different times: (a) t = −20,
(b) t = −15, (c) t = −10, (d) t = −5, (e) t = 5, (f) t = 10, (g) t = 15, and (h) t = 20. The large (blue) wave packets are due to
the free time-evolution (⟨x2β |ϕ(t)⟩0 in Eq. (161)). The small red wave packets are due to the anti-resonant state for negative
times and the green ones are due to the resonant state for positive times. The anti-resonant wave packets move inward toward
x = 0 as t increases, while the resonant ones move outward. To obtain the resonant and anti-resonant wave packets, we
numerically evaluated ⟨x2β |ϕ(t)⟩n in Eq. (161) for n = res. and n = anti-res., respectively. The anti-resonant wave packets
at any time −t are identical to the resonant wave packets at time t ; for example, compare (b) and (g).
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sign of t. We can conceptually express this in the following way: when we track the time evolu-
tion from an initial condition, we are forced to choose the resonant states and hence we observe
decays; when we track the time evolution towards a terminal condition, we are forced to choose the
anti-resonant states and hence we observe growths. The present expansion therefore symbolically
shows that the time evolution itself does not break the time-reversal symmetry, but the choice of
whether we solve the initial-condition problem or the terminal-condition problem does, together
with the condition’s symmetry or anti-symmetry under time inversion. We will detail this point
in a separate publication,63 where we will also show that once we have chosen, for instance, an
initial-condition problem (with t > 0) there actually appears a transient time scale during which
both resonant- and anti-resonant-state contributions are present. This is due to the branch-point
effect in the integration over λ in Eq. (107). The anti-resonant-state contributions are present during
this time scale and become negligible afterwards, as compared to the resonant-state contributions;
the breaking of time-reversal symmetry is then established.

The present argument is general in the sense that it does not depend on the scattering potential,
but specific in the sense that we used the tight-binding model; it is more tractable because it has
only a finite number of discrete states while models in continual spaces would have an (countably)
infinite number of discrete states. We may be able to generalize the present approach to the poten-
tial scattering problem on a continual space in the following way. Consider the one-dimensional
Schrödinger equation

−ψ ′′(x) + V (x)ψ(x) = k2ψ(x), (162)

where we incorporated the factor 2m/~2 into the potential V (x). We can write down Siegert bound-
ary condition (2) in the form

ψ ′(±L) = ±ikψ(±L), (163)

where L is chosen so that the potential V (x) vanishes outside the range −L < x < L. Suppose that
we expand the solution in terms of a complete and orthonormal basis set {ϕν(x)} in the range
−L ≤ x ≤ L. The coefficients {uν} in the expansion

ψ(x) =

ν

uνϕν(x) (164)

should satisfy 
ν

Hµνuν = k2uµ, (165)

where

Hµν B −
 L

−L
ϕµ(x)ϕ′′ν (x)dx +

 L

−L
ϕµ(x)V (x)ϕν(x)dx (166)

with the restriction 
ν

ϕ′ν(±L)uν = ±ik

ν

ϕν(±L)uν. (167)

We can incorporate restriction (167) into Eq. (166) by partially integrating the first term on the
right-hand side. We thereby arrive at the quadratic eigenvalue problem of the form

�(ik)2I − (ik)J + K
�
v⃗ = 0, (168)

where I is the identity operator,

Jµν B φµ(L)φν(L) + φµ(−L)φν(−L), (169)

Kµν B

 L

−L
ϕ′µ(x)ϕ′ν(x)dx +

 L

−L
ϕµ(x)V (x)ϕν(x)dx. (170)

We can then map Eq. (168) into a generalized linear eigenvalue problem. A possibly related
expansion in the one-dimensional continuum space has been formulated by García-Calderón.19 The
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coordinate representation of the Green’s function in that study may be upgraded to an operator
representation by extending the present formulation.

Directions of further possible generalizations include consideration of systems with massless
linear dispersions as well as interacting systems. The dispersion of light, E ∝ |k |, has a singularity
at k = 0, which can yield an anomaly in the expansion. Another interesting linear dispersion is the
Dirac dispersion E ∝ k, which does not have a singularity at k = 0. Particle-particle interactions
will be essential in equilibration of the system and hence will be particularly important in discussing
the entropy production and its connection to spontaneous time-reversal symmetry breaking.

Another ambitious generalization is the possible extension to the dynamics of the density
matrix, which is governed by the Liouville-von Neumann equation

i
d
dt
ρ(t) = [H, ρ(t)]. (171)

We may then be able to argue the monotonic time dependence of the entropy

S(t) = −Trρ(t) ln ρ(t). (172)

This approach can be quite different from a widely spread view of the time-reversal symmetry
breaking. When we reduce the microscopic degrees of freedom and specify the state of a system
only in terms of macroscopic variables, we cannot trace back the time evolution of the system from
a terminal condition. This (possibly spuriously) suggests that coarse-graining is the reason of the
time-reversal symmetry breaking. Our approach may indicate that the time-reversal symmetry can
be broken even in the level of microscopic description of the time-evolution.
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APPENDIX A: EFFECTIVE HAMILTONIAN

We here review a derivation of the effective Hamiltonian (35).6,7,10–14,38,49–56 We can derive it
for a general set of projection operators P and Q with P +Q = I. We operate them on the stationary
Schrödinger equation

H |ψ⟩ = E |ψ⟩, (A1)

obtaining

PHP|ψ⟩ + PHQ|ψ⟩ = EP|ψ⟩, (A2)
QHP|ψ⟩ +QHQ|ψ⟩ = EQ|ψ⟩. (A3)

We formally solve Eq. (A3) with respect to Q|ψ⟩ to have

Q|ψ⟩ = 1
E −QHQ

QHP|ψ⟩. (A4)

By substituting Eq. (A4) into Eq. (A2), we have

PHP|ψ⟩ + PHQ
1

E −QHQ
QHP|ψ⟩ = EP|ψ⟩, (A5)

which we can cast into the form of the Schrödinger equation for the states in the P subspace

Heff(E)(P|ψ⟩) = E(P|ψ⟩) (A6)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  159.242.208.194 On: Wed, 21 Oct 2015 21:36:37



122106-34 N. Hatano and G. Ordonez J. Math. Phys. 55, 122106 (2014)

with

Heff(E) = PHP + PHQ
1

E −QHQ
QHP. (A7)

This is the effective Hamiltonian Heff(E) given by Eq. (35).

APPENDIX B: GREEN’S FUNCTION IN THE P AND Q SUBSPACES

We here prove the following equalities:

P
1

E − H
P = P

1
E − Heff(E)P, (B1)

Q
1

E − H
P = Q

1
E −QHQ

QHP
1

E − Heff(E)P, (B2)

P
1

E − H
Q = P

1
E − Heff(E)PHQ

1
E −QHQ

Q, (B3)

Q
1

E − H
Q = Q

1
E −QHQ

Q +Q
1

E −QHQ
QHP

1
E − Heff(E)PHQ

1
E −QHQ

Q. (B4)

We use these equalities in Eqs. (37), (95), (96), (101), (106), and (107).
In order to prove Eqs. (B1)–(B4), we split the full Hamiltonian H into the two parts

H0 = PHP +QHQ = Hd + Hleads, (B5)

H1 = PHQ +QHP = Hcontacts (B6)

and consider the resolvent expansion

1
E − H

=
1

E − H0
+

1
E − H0

H1
1

E − H0
+

1
E − H0

H1
1

E − H0
H1

1
E − H0

+ · · ·. (B7)

We here note

1
E − H0

=

∞
n=0

(PHP +QHQ)n
En+1

=

∞
n=0

(PHP)n + (QHQ)n
En+1

= P
1

E − PHP
P +Q

1
E −QHQ

Q, (B8)

where we used PQ = QP = 0.
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First, we compute

P
1

E − H
P = P

1
E − H0

P + P
1

E − H0
H1

1
E − H0

P

+ P
1

E − H0
H1

1
E − H0

H1
1

E − H0
P + · · ·. (B9)

Because of Eq. (B8), we have

P
1

E − H
P = P

1
E − PHP

P + P
1

E − PHP
PH1

1
E − H0

P

+ P
1

E − PHP
PH1

1
E − H0

H1
1

E − H0
P + · · ·

= P
1

E − PHP
P + P

1
E − PHP

PHQ
1

E − H0
P

+ P
1

E − PHP
PHQ

1
E − H0

H1
1

E − H0
P + · · ·.

= P
1

E − PHP
P + P

1
E − PHP

PHQ
1

E −QHQ
P

+ P
1

E − PHP
PHQ

1
E −QHQ

H1
1

E − H0
P + · · ·. (B10)

We realize that the second term on the right-hand side vanishes. By the same token, all odd terms
with respect to H1 vanish. We therefore arrive at

P
1

E − H
P = P

1
E − PHP

P + P
1

E − PHP
PHQ

1
E −QHQ

QHP
1

E − PHP
P + · · ·

= P
1

E − PHP
P + P

1
E − PHP

Σ(E) 1
E − PHP

P

+ P
1

E − PHP
Σ(E) 1

E − PHP
Σ(E) 1

E − PHP
P + · · ·

= P
1

E − PHP − Σ(E)P, (B11)

where

Σ(E) = PHQ
1

E −QHQ
QHP (B12)

is often called the self-energy of the leads. By setting

Heff(E) = PHP + Σ(E) (B13)

according to Eq. (A7), we have Eq. (B1).
Next, we compute

Q
1

E − H
P = Q

1
E − H0

P +Q
1

E − H0
H1

1
E − H0

P

+Q
1

E − H0
H1

1
E − H0

H1
1

E − H0
P + · · ·. (B14)

This time, all even terms with respect to H1 vanish. We therefore have

Q
1

E − H
P = Q

1
E −QHQ

QHP
1

E − PHP
P

+Q
1

E −QHQ
QHP

1
E − PHP

PHQ
1

E −QHQ
QHP

1
E − PHP

P + · · ·

= Q
1

E −QHQ
QHP

1
E − PHP

P
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+Q
1

E −QHQ
QHP

1
E − PHP

Σ(E) 1
E − PHP

P

+Q
1

E −QHQ
QHP

1
E − PHP

Σ(E) 1
E − PHP

Σ(E) 1
E − PHP

P + · · ·

= Q
1

E −QHQ
QHP

1
E − PHP − Σ(E)P, (B15)

which is Eq. (B2). We can prove other two equalities (B3) and (B4) similarly.
In the specific case of the present system in Fig. 4(a), we can explicitly obtain the Green’s

function for QHQ,

Q
1

E −QHQ
Q. (B16)

Note that the partial Hamiltonian QHQ is composed of semi-infinite chains

QHQ = Hleads =

N
i=1

ni
α=1

H lead
iα . (B17)

Its eigenstate |k⟩ is the direct product of the eigenstate of each chain, which is given by the plane
wave

⟨xiα |kiα⟩ =
√

2 sin(kiαxiα). (B18)

We therefore have

Q
1

E −QHQ
Q =


iα

 π

−π

dkiα
2π

Q|kiα⟩ 1
E + 2 cos kiα

⟨kiα |Q, (B19)

and hence,

⟨x |Q 1
E −QHQ

Q|y⟩ =
 π

−π

2 sin(k0x) sin(k0y)
E + 2 cos k0

dk0

2π

=


C0

dλ0

4πiλ0

(λ0
x − λ0

−x)(λ0
y − λ0

−y)
λ0 − λ0

−1

(
λ

λ − λ0
− λ

λ − λ0
−1

)
(B20)

for the sites x and y on one lead, where the contour C0 is the contour of the counterclockwise unit
circle. We converted the energy variable from E to λ as well as from eik0 to λ0 in the second line.
The integrand of Eq. (B20) has poles at λ0 = 0,λ,λ−1,∞.

Particularly, when we use the contour C2 in Fig. 7(c) for the integration over λ, we can specify
that the pole λ0 = λ is inside the unit circle while the pole λ0 = λ

−1 is outside it. Equation (B20) is
then generally integrable. Let us consider the case x > y ≥ 1, for example. The terms with λ0

x+y

and λ0
x−y in the numerator do not have poles at λ0 = 0. For them, we encircle the pole λ0 = λ inside

the unit circle counterclockwise having

2πi
1

4πiλ
λx(λy − λ−y)
λ − λ−1 (−λ) = −1

2
λ
x λ

y − λ−y

λ − λ−1 . (B21)

Note that the zeros of the denominator λ0 − λ0
−1 in Eq. (B20) are not poles because the numerator

has canceling zeros in. On the other hand, the terms with λ0
−x+y and λ0

−x−y in the numerator have
higher poles at λ0 = 0. In order to avoid computing the residue at λ0, we rather encircle the pole
λ0 = λ

−1 outside the unit circle clockwise having

−2πi
1

4πiλ−1

−λx(λ−y − λy)
λ−1 − λ

(−λ−1) = −1
2
λ
x λ

y − λ−y

λ − λ−1 (B22)

which is equal to Eq. (B21). We thereby arrive at

⟨x |Q 1
E(λ) −QHQ

Q|y⟩ = −λx λ
y − λ−y

λ − λ−1 (B23)
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for x > y ≥ 1. A similar calculation reveals that it holds for x = y ≥ 1 too. We can use expres-
sion (B23) for the first term on the right-hand side of Eq. (B4).

We can also write down the following matrix element which can appear in Eq. (B2):

Q
1

E −QHQ
QHP =


iα

 π

−π

dkiα
2π

Q|kiα⟩ 1
E + 2 cos kiα

⟨kiα |1iα⟩(−tiα)⟨di |P

= −

iα

tiα

 π

−π

dkiα
2π

Q|kiα⟩
√

2 sin kiα
E + 2 cos kiα

⟨di |P. (B24)

We then have

⟨xiα |Q 1
E(λ) −QHQ

QHP|di⟩ = −tiα

 π

−π

dkiα
2π

2 sin(kiαxiα) sin kiα
E + 2 cos kiα

.

= −tiα


C0

dλ0

4πiλ0

�
λ0

x − λ0
−x�

(
λ

λ − λ0
− λ

λ − λ0
−1

)
, (B25)

where we converted the energy variable from E to λ and eikiα to λ0. We also dropped the subscript
of xiα in the second line for brevity. Particularly, when we use the contour C2 in Fig. 7(c) for the
integration over λ, we use the same algebra as in Eqs. (B21) and (B23) arriving at

⟨x |Q 1
E(λ) −QHQ

QHP|di⟩ = tiαλx. (B26)

We use this in Eq. (43).
Finally, let us calculate the matrix element of

PHQ
1

E −QHQ
QHP =


iα

 π

−π

dkiα
2π

P|di⟩(−tiα)⟨1iα |kiα 1
E + 2 cos kiα

⟨kiα |1iα⟩(−tiα)⟨di |P,
(B27)

which is the second term of effective Hamiltonian (A7) and equivalently the self-energy term of
Eq. (38). In a similar way to the above, we have

⟨d j |PHQ
1

E(λ) −QHQ
QHP|di⟩ = δi j


α

(tiα)2
 π

−π

dkiα
2π

2sin2kiα
E + 2 cos kiα

= δi j

α

(tiα)2

C0

dλ0

4πiλ0

(
λ0 − λ0

−1
) (

λ

λ − λ0
− λ

λ − λ0
−1

)
= −δi j


α

(tiα)2λ
= −λ⟨d j |PHQHP|di⟩. (B28)

We use this in Eq. (39).

APPENDIX C: DERIVATION OF OUR PREVIOUS EXPANSION

We here derive our previous expansion (91) (Eqs. (4) and (56) in Ref. 38) from our new expan-
sion (90). Let us note here that if the value of λ = eik gives E + iδ with a real value of E, the value
of 1/λ = e−ik gives E − iδ. This means that if Geff(E(λ)) gives the retarded Green’s function GR(E)
in the P subspace, Geff(E(1/λ)) should give the advanced Green’s function GA in the P subspace.
We will indeed derive

Geff(E(λ)) + Geff(E(1/λ)) =
2N
n=1

P|φn⟩ 1
E − En

⟨φ̃n|P, (C1)

which corresponds to expansion (91).
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We first transform new expansion (90) to

Geff(E(λ)) =
2N
n=1

P|ψn⟩1 − λλn
E − En

⟨ψ̃n |P

=

2N
n=1

P|φn⟩ λn
−1 − λ

λn
−1 − λn

1
E − En

⟨φ̃n |P, (C2)

where we used the identity

E − En = −
(
λ +

1
λ
− λn −

1
λn

)
= −(λ − λn)

(
1 − 1
λλn

)
=
λ − λn
λλn

(1 − λλn) (C3)

in the first line and used relations (93) and (94) in the second line. We further transform it by noting
that Eq. (C2) should be invariant under the substitution λ → 1/λ and λn → 1/λn. This is because
the Green’s function is originally a function of the energy only and because the energy and the
eigenenergy are invariant under the substitution above. This substitution in Eq. (C2) leads to

Geff(E(λ)) =
2N
n=1

P|φn⟩ λn − λ
−1

λn − λn−1

1
E − En

⟨φ̃n|P. (C4)

We therefore have

Geff(E(1/λ)) =
2N
n=1

P|φn⟩ λn − λ
λn − λn−1

1
E − En

⟨φ̃n |P. (C5)

Summing Eqs. (C2) and (C5), we have Eq. (C1) and hence Eq. (91).

APPENDIX D: NORMALIZATION OF THE STATES WITH POINT SPECTRA

We here compare the normalization set by Eq. (74) with the standard normalization of the
bound and resonant states and derive Eqs. (93) and (94) where |ψn⟩ and ⟨ψ̃n | are the eigenstates
normalized under Eq. (74) while |φn⟩ and ⟨φ̃n | are the eigenstates normalized in the standard way.
By using expressions (53), (68), and (69) in Eq. (74), we can explicitly write down the normaliza-
tion in the present formulation as follows:(

1 − λn2
) ⟨ψ̃n |P|ψn⟩ + λn2⟨ψ̃n |PΘP|ψn⟩ = 1. (D1)

On the other hand, the standard normalization is of course given by

N
i=1

⟨di |φ̃n⟩⟨φn |di⟩ +
N
i=1

ni
α=1

∞
xiα=1

⟨xiα |φ̃n⟩⟨φn |xiα⟩ = 1, (D2)

where we denoted the eigenstates with |φn⟩ because of the difference in the normalization. The
normalization (D2) can be cast into the form

⟨φ̃n |P|φn⟩ +
∞
x=1

λn
2x⟨φ̃n |PΘP|φn⟩ = 1. (D3)

The transformation of the second term on the left-hand side is confirmed by using Eqs. (43)
and (46). Although |λn | is greater than unity for the resonant and anti-resonant states, it is customary
to sum up the geometric series nonetheless,19,25–27 often by introducing a convergence factor. This
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procedure gives the same result for all eigenstates with point spectra

⟨φ̃n |P|φn⟩ + λn
2

1 − λn2 ⟨φ̃n |PΘP|φn⟩ = 1. (D4)

Comparing Eqs. (D1) and (D2), we obtain the relations

|φn⟩ =


1 − λn2|ψn⟩, (D5)

⟨φ̃n | =


1 − λn2⟨ψ̃n | (D6)

which are Eqs. (93) and (94). Note that the normalization in the present framework does not require
the summation of the divergent geometric series, which was once a subject of debate.25–27
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