10 research outputs found

    Obestatin protects and reverses nonalcoholic fatty liver disease and its associated insulin resistance in rats via inhibition of food intake, enhancing hepatic adiponectin signaling, and blocking ghrelin acylation

    No full text
    <p>This study investigated the ameliorative and protective effects of long-term obestatin administration (80 nmol/kg/ intraperitoneal injection (i.p.)) on the pathogenesis of high-fat diet (HFD) induced nonalcoholic fatty liver disease (NAFLD) in rats. Rats (<i>n</i> = 8/group) were divided as control, NAFLD, NAFLD + Simvastatin, NAFLD + obestatin, NAFLD then obestatin, and obestatin then NAFLD. Obestatin co -or post-therapy significantly reduced hepatomegaly and reversed hyperlipidemia, hepatic lipid accumulation, and insulin resistance (IR). Mechanistically obestatin treatments in these rats significantly prevented the increases in final body weights and food intake. Concomitantly, it enhanced circulatory adiponectin levels and hepatic signaling as evident by elevated hepatic protein levels of adiponectin receptors (adipoRII), carnitine palmitoyltransferase-1 (CPT-1), peroxisome proliferator-activated receptor- α (PPAR-α), and phosphor-AMPK (p-AMPK). In addition, obestatin enhanced total circulatory ghrelin levels and significantly increased deacylated ghrelin to acylated ghrelin (DAG/AG) ratio. These data suggest that obestatin reverses and protects against development or progression of NAFLD directly by modulating ghrelin and adiponectin signaling or indirectly by lowering food intake.</p

    Inhibition of the hepatic glucose output is responsible for the hypoglycemic effect of Crataegus aronia against type 2 diabetes mellitus in rats

    No full text
    This study aimed to analyze the ameliorative effect of Crataegus aronia against type 2 diabetes mellitus (type 2-DM). Type 2-DM rats were treated with the extract and the changes in serum parameters (glucose, insulin, HbA1c and lipids) and hepatic parameters (oxidative stress, inflammation and mRNA levels of GLUT-2 and gluconeogenesis enzymes) were compared to those of control and untreated type 2-DM rats. Also, levels of hepatic insulin receptors 1A (IR-1A) were measured immunohistochemically and compared between groups. In type 2-DM rats, C. aronia significantly improved the oral glucose tolerance test (OGTT), lowered plasma glucose, serum lipid levels and the hepatic glycogen content. Also, it significantly lowered the levels of hepatic lipid peroxidation, tumor necrosis factor alpha (TNFα) and interleukin-6 (IL- 6) and enhanced the level of reduced glutathione (GSH) and increased superoxide dismutase (SOD) activity. C. aronia enhanced hepatic mRNA expression of the insulin receptor A isoform (IR-A) and glucose 6-phosphatase (G6Pase), and lowered glucose transporter-2 (GLUT-2) and glycerol kinase (GK) mRNA expression. In conclusion, C. aronia ameliorates T2DM by inhibiting hepatic glucose output

    Antiplatelet activity of astaxanthin in control- and high cholesterol-fed rats mediated by down-regulation of P2Y12, inhibition of NF-κB, and increasing intracellular levels of cAMP

    No full text
    This study evaluated the antiplatelet effect of the plant carotenoid, astaxanthin (ASTX) in rats fed either control or high cholesterol plus cholic acid diet (HCCD) and possible underlying mechanisms. Adult male Wistar rats were divided into four groups (n = 8/each), namely, control (fed normal diet), control + ASTX (10 mg/kg/day), HCCD-fed rats, and HCCD + ASTX-treated rats. Diets and treatments were orally administered daily for 30 days. In both control and HCCD-fed rats, ASTX significantly increased fecal levels of triglycerides and cholesterol, reduced platelet count, prolonged bleeding time, and inhibited platelet aggregation. It also reduced platelet levels of reactive oxygen species (ROS) and Bcl-2; thromboxane B2 (TXB2) release; and the expression of P2Y12, P-selectin, and CD36 receptors. Moreover, the activity NF-κB p65 and Akt was inhibited. Concomitantly, it increased the protein levels of cleaved caspase-3 and vasodilator-stimulated phosphoprotein (p-VASP) as well as intracellular levels of cAMP. However, in HCCD-fed rats, the effects of ASTX were associated with reduced serum levels of ox-LDL-c and fasting plasma glucose levels. In conclusion, antiplatelet effects of ASTX involve ROS scavenging, inhibiting NF-κB activity, down-regulating P2Y12 expression, and increasing intracellular levels of cAMP that are attributed to its antioxidant, hypolipidemic, and anti-inflammatory effects

    Discovery of pyrimidine-tethered benzothiazole derivatives as novel anti-tubercular agents towards multi- and extensively drug resistant Mycobacterium tuberculosis

    No full text
    AbstractIn this study, new benzothiazole–pyrimidine hybrids (5a–c, 6, 7a–f, and 8–15) were designed and synthesised. Two different functionalities on the pyrimidine moiety of lead compound 4 were subjected to a variety of chemical changes with the goal of creating various functionalities and cyclisation to further elucidate the target structures. The potency of the new molecules was tested against different tuberculosis (TB) strains. The results indicated that compounds 5c, 5b, 12, and 15 (MIC = 0.24–0.98 µg/mL) are highly active against the first-line drug-sensitive strain of Mycobacterium tuberculosis (ATCC 25177). Thereafter, the anti-tubercular activity was evaluated against the two drug-resistant TB strains; ATCC 35822 and RCMB 2674, where, many compounds exhibited good activity with MIC = 0.98–62.5 3 µg/mL and 3.9–62.5 µg/mL, respectively. Compounds 5c and 15 having the highest anti-tubercular efficiency towards sensitive strain, displayed the best activity for the resistant strains by showing the MIC = 0.98 and 1.95 µg/mL for MDR TB, and showing the MIC = 3.9 and 7.81 µg/mL for XDR TB, consecutively. Finally, molecular docking studies were performed for the two most active compounds 5c and 15 to explore their enzymatic inhibitory activities

    Discovery of sulfonamide-tethered isatin derivatives as novel anticancer agents and VEGFR-2 inhibitors

    No full text
    AbstractIn this work, new isatin-based sulphonamides (6a-i, 11a-c, 12a-c) were designed and synthesised as potential dual VEGFR-2 and carbonic anhydrase inhibitors with anticancer activities. Firstly, all target isatins were examined for in vitro antitumor action on NCI-USA panel (58 tumour cell lines). Then, the most potent derivatives were examined for the potential CA inhibitory action towards the physiologically relevant hCA isoforms I, II, and tumour-linked hCA IX isoform, in addition, the VEGFR-2 inhibitory activity was evaluated. The target sulphonamides failed to inhibit the CA isoforms that could be attributable to the steric effect of the neighbouring methoxy group, whereas they displayed potent VEGFR-2 inhibitory effect. Following that, isatins 11b and 12b were tested for their influence on the cell cycle disturbance, and towards the apoptotic potential. Finally, detailed molecular modelling analyses, including docking and molecular dynamics, were carried out to assess the binding mode and stability of target isatins

    Discovery of sulfonamide-tethered isatin derivatives as novel anticancer agents and VEGFR-2 inhibitors

    No full text
    In this work, new isatin-based sulphonamides (6a-i, 11a-c, 12a-c) were designed and synthesised as potential dual VEGFR-2 and carbonic anhydrase inhibitors with anticancer activities. Firstly, all target isatins were examined for in vitro antitumor action on NCI-USA panel (58 tumour cell lines). Then, the most potent derivatives were examined for the potential CA inhibitory action towards the physiologically relevant hCA isoforms I, II, and tumour-linked hCA IX isoform, in addition, the VEGFR-2 inhibitory activity was evaluated. The target sulphonamides failed to inhibit the CA isoforms that could be attributable to the steric effect of the neighbouring methoxy group, whereas they displayed potent VEGFR-2 inhibitory effect. Following that, isatins 11b and 12b were tested for their influence on the cell cycle disturbance, and towards the apoptotic potential. Finally, detailed molecular modelling analyses, including docking and molecular dynamics, were carried out to assess the binding mode and stability of target isatins.</p
    corecore