4 research outputs found
Quantitative Analysis of Delta-like 1 Membrane Dynamics Elucidates the Role of Contact Geometry on Notch Signaling
Notch signaling is ubiquitously used to coordinate differentiation between adjacent cells across metazoans. Whereas Notch pathway components have been studied extensively, the effect of membrane distribution and dynamics of Notch receptors and ligands remains poorly understood. It is also unclear how cellular morphology affects these distributions and, ultimately, the signaling between cells. Here, we combine live-cell imaging and mathematical modeling to address these questions. We use a FRAP-TIRF assay to measure the diffusion and endocytosis rates of Delta-like 1 (Dll1) in mammalian cells. We find large cell-to-cell variability in the diffusion coefficients of Dll1 measured in single cells within the same population. Using a simple reaction-diffusion model, we show how membrane dynamics and cell morphology affect cell-cell signaling. We find that differences in the diffusion coefficients, as observed experimentally, can dramatically affect signaling between cells. Together, these results elucidate how membrane dynamics and cellular geometry can affect cell-cell signaling
Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration
Can plants sense natural airborne sounds and respond to them rapidly? We show that Oenothera drummondii flowers, exposed to playback sound of a flying bee or to synthetic sound signals at similar frequencies, produce sweeter nectar within 3Â min, potentially increasing the chances of cross pollination. We found that the flowers vibrated mechanically in response to these sounds, suggesting a plausible mechanism where the flower serves as an auditory sensory organ. Both the vibration and the nectar response were frequency-specific: the flowers responded and vibrated to pollinator sounds, but not to higher frequency sound. Our results document for the first time that plants can rapidly respond to pollinator sounds in an ecologically relevant way. Potential implications include plant resource allocation, the evolution of flower shape and the evolution of pollinators sound. Finally, our results suggest that plants may be affected by other sounds as well, including anthropogenic ones.publishe