6 research outputs found

    Prebiotics metabolism by gut-isolated probiotics

    Get PDF
    There are numerous species of bacteria resides in the lumen of human colon. The word ‘colon’, resembles colony or the colonization of microbiota of which plays an important role in the fermentation of prebiotics. The standpoint of prebiotic nowadays is well reported for attenuating gut dysbiosis in many clinical studies tested on animals and human. However, because of the huge amount of gut microbiome, the attempt to connect the dots between bacterial population and the host are not plainly discernible. Thus, a need to analyse recent research on the pathways of prebiotic metabolism adopted by commonly studied probiotics i.e. Bifidobacteria and Lactobacillus. Several different substrate-dependent gene expressions are induced to break down oligosaccharide molecules shown by those probiotics. The hydrolysis can occur either by membrane bound (extracellular) or cytoplasmic (intracellular) enzyme of the enteric bacteria. Therefore, this review narrates several prebiotic metabolisms occur during gut fermentation, and metabolite production i.e. organic acids conversion

    An overview on ultrafiltration in food processing

    Get PDF
    Generally speaking, purification represents the most costly step within food production and biotechnological processes. Membrane-based processes, such as ultrafiltration (pore size from 10 to 1000 Å) are widely used on an industrial scale. Membrane-based processes are aligned to green chemistry concepts, that is, they are environmentally-friendly, do not generate harmful residues, show a low consumption of energy and an easy scale-up, among others. The food industry applies ultrafiltration to a wide range of fields. For instance (i) dairy - milk treatment, production of ice cream, etc. As an alternative to pasteurization of milk, ultrafiltration can be used also as pretreatment of milk for cheese production, in which large molecular weight compounds such as caseins, whey proteins, etc., are in the retentate, whereas low molecular weight compounds such as lactose and peptides are in the permeate. Similarly, low lactose yogurts can be produced (ii) beverage - during the juice clarification using membranes, pulp, pectin and essential oils are retained, whereas the juice itself is permeate. Ultrafiltration is also used in the production of clear beer and wine (concentration) (iii) degumming edible oils - (e.g., crude soybean oil, sunflower seed oil), in which phospholipids are removed (retentate) by ultrafiltration as an equivalent first step of the oil refining process (traditionally, carried out by water or dilute acid that leads to precipitation phospholipids) (iv) fish, poultry and gelatin - ultrafiltration is largely used for wastewater treatment processes, in particular for high protein content residues. Nevertheless, over the past few decades, the recovery of bioactive peptides and proteins from these wastewaters has drawn significant attention, that is, doubly advantageous (waste treatment and recovery of high added-value compounds) (v) drinking water treatment - high quality potable water implies the absence of microorganisms (e.g., Giardia), organic matter (e.g., humic substances), inorganic particles, and others hazardous substances. This water quality can be achieved by ultrafiltration, in which the main limitation is related to long-term flux decline (membrane fouling). Thus, membrane materials and membrane filtration operating systems, etc., should be better investigated (vi) recovery of specific molecules - plant proteins, enzymes (e.g., lysosyme) and phenolic compounds can be recovery and purified by ultrafiltration well-defined methodologies. Membrane-based separations, in particular ultrafiltration, are extensively used by food industry. However, improvements are still needed in virtually all applications

    Trends in adsorption mechanisms of fruit peel adsorbents to remove wastewater pollutants (Cu (II), Cd (II) and Pb (II))

    No full text
    Currently, there is increasing interest on low cost and commercially available materials for the adsorp-tion of heavy metals. The vital benefits of adsorption technologies are its potential in reducing the concentration of heavy metal ions using low-cost adsorbent materials. Fruit peel wastes (FPW) are readily available in abundance. Furthermore, it has a high potential as a sustainable adsorbent due to its large quantity of lignocellulosic materials. Realizing this potential, there are many studies on various fruit peels waste adsorbents used in the removal of Pb (II), Cu (II) and Cd (II) ions from wastewater. However, there is no comprehensive review of these adsorbents, especially on the factors that influenced the adsorption capacity. Hence, this review aims to study on the various fruit peels waste adsorbents and the factors by comparing the metal binding capacities, metal removal perfor-mances, sorbent dosage, optimum pH, temperature, initial concentration and contact time. Finally, the adsorption mechanisms were also discussed

    Bioactive peptides and its alternative processes: A review

    Get PDF
    Bioactive peptides are molecules of paramount importance with significant health benefits. These bioactive peptides extracted from various food sources demonstrated significant bioactivity and potency, including angiotensinconverting enzyme inhibitors, antioxidants, opioids, and antimicrobials. However, various challenges hindered the industrial-scale production of peptides, such as the sensory performance of peptides due to bitterness, low peptides bioavailability and yield, minimal human tests, unconfirmed molecular mechanisms, and the sustainability of the resources for mass production. The emerging alternative processes such as high hydrostatic pressure, microwave, ultrasound, sub- and supercritical fluids are selectively beneficial, albeit time-consuming and expensive. The diversity of the properties of bioactive peptides complicates the design of the appropriate purification steps, particularly for novel peptides. The integrative process by coupling the production and purification of bioactive peptides to a single integrative system can be a way forward for bioactive peptides production with high purity, potency, and cost-effectiveness. Thus, the review provides a comprehensive insight into the current status, trends, and challenges of bioactive peptide production through conventional and emerging processes

    Comparative study of the yield and physicochemical properties of collagen from Sea Cucumber (Holothuria scabra), Obtained through Dialysis and the Ultrafiltration Membrane

    Get PDF
    Collagen was extracted from the body wall of sea cucumber (Holothuria scabra) using the pepsin-solubilized collagen method followed by isolation using dialysis and the ultrafiltration membrane. The yield and physicochemical properties of the collagen obtained from both isolation methods, denoted as D-PSC and UF-PSC, were compared. The ultrafiltration method affords a higher yield of collagen (11.39%) than that of the dialysis (5.15%). The isolated collagens have almost the same amino acid composition, while their functional groups, referred to as amide A, B, I, II, and III bands, were in accordance with commercial collagen, as verified by Fourier Transform Infrared (FT-IR) spectroscopy. The UV-Vis absorption peaks at 240 nm and 220 nm, respectively, indicated that the collagens produced are type-I collagen. The D-PSC showed interconnecting sheet-like fibrils, while the UF-PSC exhibited a flaky structure with flat-sheets arranged very close to each other. The higher yield and comparable physicochemical properties of the collagen obtained by ultrafiltration as compared with dialysis indicate that the membrane process has high potential to be used in large-scale collagen production for food and pharmaceutical applications
    corecore