3 research outputs found

    DataSheet_1_Acetic acid positively modulates proline metabolism for mitigating PEG-mediated drought stress in Maize and Arabidopsis.zip

    No full text
    IntroductionOsmotic imbalance is one of the major consequences of drought stress, negatively affecting plant growth and productivity. Acetic acid has modulatory roles in osmotic balance in plants; however, the mechanistic insights into acetic acid-mediated osmotic adjustment under drought stress remains largely unknown.MethodsHere, we investigated how seed priming and seedling root treatment with acetic acid enabled maize plants overcoming polyethylene glycol (PEG)-induced drought effects.ResultsMaize seeds primed with acetic acid showed better growth performance when compared with unprimed seeds under PEG application. This growth performance was mainly attributed to improved growth traits, such as fresh weight, dry weight, length of shoots and roots, and several leaf spectral indices, including normalized difference vegetation index (NDVI) and chlorophyll absorption in reflectance index (MCARI). The levels of oxidative stress indicators hydrogen peroxide (H2O2) and malondialdehyde (MDA) did not alter significantly among the treatments, but proline content as well as the expression of proline biosynthetic gene, Δ1-PYRROLINE-5-CARBOXYLATE SYNTHETASE 1 (P5CS1) was significantly elevated in plants receiving acetic acid under PEG-treatments. On the other hand, treating the seedlings root with acetic acid led to a significant recovery of maize plants from drought-induced wilting. Although growth traits remained unchanged among the treatments, the enhancement of leaf water content, photosynthetic rate, proline level, expression of P5CS1, and antioxidant enzyme activities along with reduced level of H2O2 and MDA in acetic acid-supplemented drought plants indicated a positive regulatory role of acetic acid in maize tolerance to drought. Moreover, the high expression of P5CS1 and the subsequent elevation of proline level upon acetic acid application were further validated using wild type and proline biosynthetic mutant p5cs1 of Arabidopsis. Results showed that acetic acid application enabled wild type plants to maintain better phenotypic appearance and recovery from drought stress than p5cs1 plants, suggesting a crosstalk between acetic acid and proline metabolism in plants under drought stress.DiscussionOur results highlight the molecular and intrinsic mechanisms of acetic acid conferring plant tolerance to drought stress.</p

    Data_Sheet_1_Impact of Plantago ovata Forsk leaf extract on morpho-physio-biochemical attributes, ions uptake and drought resistance of wheat (Triticum aestivum L.) seedlings.docx

    No full text
    The present study was conducted to examine the potential role of Plantago ovata Forsk leaf extract (POLE) which was applied at various concentration levels (control, hydropriming, 10, 20, 30, and 40% POLE) to the wheat (Triticum aestivum L.) seedlings. Drought stressed was applied at 60% osmotic potential (OM) to the T. aestivum seedlings to study various parameters such as growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress and response of various antioxidants and nutritional status of the plants. Various growth parameters such as gaseous exchange attributes, antioxidants and nutritional status of T. aestivum were investigated in this study. It was evident that drought-stressed condition had induced a negative impact on plant growth, photosynthetic pigment, gaseous exchange attributes, stomatal properties, and ion uptake by different organs (roots and shoots) of T. aestivum. The decrease in plant growth resulted from oxidative stress and overcome by the antioxidant (enzymatic and non-enzymatic) compounds, since their concentration increased in response to dehydration. Seed priming with POLE positively increased plant growth and photosynthesis, by decreasing oxidative stress indicators and increasing activities of antioxidant (enzymatic and non-enzymatic) compounds, compared to the plants which were grown without the application of POLE. Our results also depicted that optimum concentration of POLE for T. aestivum seedlings under drought condition was 20%, while further increase in POLE (30 and 40%) induced a non-significant (P < 0.05) effect on growth (shoot and root length) and biomass (fresh and dry weight) of T. aestivum seedling. Here we concluded that the understanding of the role of seed priming with POLE in the increment of growth profile, photosynthetic measurements and nutritional status introduces new possibilities for their effective use in drought-stressed condition and provides a promising strategy for T. aestivum tolerance against drought-stressed condition.</p

    Image_1_Postharvest physiology and biochemistry of Valencia orange after coatings with chitosan nanoparticles as edible for green mold protection under room storage conditions.jpeg

    No full text
    Because of their unique features, nanomaterials have been proposed and have gained acceptance in postharvest applications in fruit. Increasing the storage life and improving the quality of Valencia oranges was investigated using nano-chitosan. A chitosan nanoparticle was prepared by using high-energy ball milling. Chitosan nanoparticles were characterized by Dynamic light scattering, FTIR spectroscopy and Surface morphology by transmission electron microscopy. Fully mature Valencia oranges were harvested and then coated with one of these concentrations (0.2, 0.4, and 0.8% nano-chitosan) and control. The fruits were stored under room storage conditions for 75 days. The quality parameters (fruit weight losses, fruit decay percentage, fruit firmness, total acidity, total soluble solids percentage and T.S.S./acid ratio, ascorbic acid content) were taken in biweekly intervals after 0, 15, 30, 45, 60, and 75 days. Beside the in vitro testing of antifungal activity of chitosan nanoparticles. According to the findings of the two succeeding seasons, the nano-chitosan 0.8% treatment showed the best effects and had the lowest rate of fruit weight loss, fruit deterioration, and T.S.S./acid ratio in comparison to the other treatments in both seasons. Furthermore, the 0.8% nano-chitosan reveled the highest levels of fruit hardness and fruit pulp firmness. Fruit weight loss, fruit deterioration, TSS, and TSS/acid ratio, as well as other metrics, were steadily elevated prior to the storage time. The best results were obtained when Valencia oranges fruits were treated with 0.8% nano-chitosan for 75 days at room temperature.</p
    corecore