7 research outputs found

    Piecing together the structural organisation of lipid exchange at membrane contact sites.

    Get PDF
    Membrane contact sites (MCSs) are areas of close proximity between organelles, implicated in transport of small molecules and in organelle biogenesis. Lipid transfer proteins at MCSs facilitate the distribution of lipid species between organelle membranes. Such exchange processes rely on the apposition of two different membranes delimiting distinct compartments and a cytosolic intermembrane space. Maintaining organelle identity while transferring molecules therefore implies control over MCS architecture both on the ultrastructural and molecular levels. Factors including intermembrane distance, density of resident proteins, and contact surface area fine-tune MCS function. Furthermore, the structural arrangement of lipid transfer proteins and associated proteins underpins the molecular mechanisms of lipid fluxes at MCSs. Thus, the architecture of MCSs emerges as an essential aspect of their function

    The surface of lipid droplets constitutes a barrier for endoplasmic reticulum-resident integral membrane proteins

    Get PDF
    Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins

    Mature lipid droplets are accessible to ER luminal proteins

    Get PDF
    Lipid droplets are found in most organisms where they serve to store energy in the form of neutral lipids. They are formed at the endoplasmic reticulum (ER) membrane where the neutral-lipid-synthesizing enzymes are located. Recent results indicate that lipid droplets remain functionally connected to the ER membrane in yeast and mammalian cells to allow the exchange of both lipids and integral membrane proteins between the two compartments. The precise nature of the interface between the ER membrane and lipid droplets, however, is still ill-defined. Here, we probe the topology of lipid droplet biogenesis by artificially targeting proteins that have high affinity for lipid droplets to inside the luminal compartment of the ER. Unexpectedly, these proteins still localize to lipid droplets in both yeast and mammalian cells, indicating that lipid droplets are accessible from within the ER lumen. These data are consistent with a model in which lipid droplets form a specialized domain in the ER membrane that is accessible from both the cytosolic and the ER luminal side

    In situ architecture of the ER–mitochondria encounter structure

    Get PDF
    The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1,2,3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum–mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4,5,6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.<br/

    Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure

    No full text
    Lipid droplets (LDs) are intracellular organelles responsible for lipid storage, and they emerge from the endoplasmic reticulum (ER) upon the accumulation of neutral lipids, mostly triglycerides (TG), between the two leaflets of the ER membrane. LD biogenesis takes place at ER sites that are marked by the protein seipin, which subsequently recruits additional proteins to catalyze LD formation. Deletion of seipin, however, does not abolish LD biogenesis, and its precise role in controlling LD assembly remains unclear. Here, we use molecular dynamics simulations to investigate the molecular mechanism through which seipin promotes LD formation. We find that seipin clusters TG, as well as its precursor diacylglycerol, inside its unconventional ring-like oligomeric structure and that both its luminal and transmembrane regions contribute to this process. This mechanism is abolished upon mutations of polar residues involved in protein–TG interactions into hydrophobic residues. Our results suggest that seipin remodels the membrane of specific ER sites to prime them for LD biogenesis

    In situ architecture of the ER-mitochondria encounter structure.

    Get PDF
    The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells
    corecore