2,680 research outputs found

    The First Year of the Large Hadron Collider: A Brief Review

    Full text link
    The first year of LHC data taking provided an integrated luminosity of about 35/pb in proton-proton collisions at sqrt(s)=7 TeV. The accelerator and the experiments have demonstrated an excellent performance. The experiments have obtained important physics results in many areas, ranging from tests of the Standard Model to searches for new particles. Among other results the physics highlights have been the measurements of the W-, Z-boson and t t-bar production cross-sections, improved limits on supersymmetric and other hypothetical particles and the observation of jet-quenching, elliptical flow and J/Psi suppression in lead-lead collisions at sqrt(sNN) = 2.76 TeV.Comment: 11 pages, 9 figures, invited brief review for Mod. Phys. Lett.

    Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    Get PDF
    Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low (of the order of couple of percent) energy spread. In this article we study the dynamics of such bunches in drift space (vacuum) and in channel-guided laser wakefields. Analytical solutions were found for the transverse coordinate of an electron and for the bunch envelope in the wakefield in the case of arbitrary change in the energy. Our results show strong bunch dynamics already on a millimeter scale propagation distance both in plasma and in vacuum. When the bunch propagates in vacuum, its transverse sizes grow considerably; the same is observed for the normalized bunch emittance that worsens the focusability of the bunch. A scheme of two-stage laser wakefield accelerator with small drift space between the stages is proposed. It is found that fast longitudinal betatron phase mixing occurs in a femtosecond bunch when it propagates along the wakefield axis. When bunch propagates off axis, strong bunch decoherence and fast emittance degradation due to the finite bunch length was observed

    Ponderomotive scattering of an electron-bunch before injection into a laser wakefield

    Get PDF
    For the purpose of laser wakefield acceleration, it turned out that also the injection of electron bunches longer than a plasma wavelength can generate accelerated femtosecond bunches with relatively low energy spread. This is of high interest because such injecting bunches can be provided, e.g., by state-of-the-art photo cathode RF guns. Here we point out that when an e-bunch is injected in the wakefield it is important to take into account the ponderomotive scattering of the injecting bunch by the laser pulse in the vacuum region located in front of the plasma. At low energies of the injected bunch this scattering results in a significant drop of the collection efficiency. Larger collection efficiency can by reached with lower intensity laser pulses and relatively high injection energies. We also estimate the minimum trapping energy for the injected electrons and the length of the trapped bunch.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    The estimation of neutrino fluxes produced by proton-proton collisions at s=14\sqrt{s}=14 TeV of the LHC

    Full text link
    Intense and collimated neutrino beams are produced by charm and beauty particle decays from proton-proton collisions at the LHC. A neutrino experiment would be run parasitically without interrupting the LHC physics program during the collider run. We estimate the neutrino fluxes from proton-proton collisions at s=14\sqrt{s}=14 TeV of the LHC with the designed luminosity, 10^{34} \lumi. By mounting about 200 tons of fiducial volume of a neutrino detector at 300 \m away from the interaction point, about 150,000 of charged current neutrino events per year can be observable.Comment: 8 pages, Accepted in JHE

    Forward-Backward Correlations and Event Shapes as probes of Minimum-Bias Event Properties

    Full text link
    Measurements of inclusive observables, such as particle multiplicities and momentum spectra, have already delivered important information on soft-inclusive ("minimum-bias") physics at the Large Hadron Collider. In order to gain a more complete understanding, however, it is necessary to include also observables that probe the structure of the studied events. We argue that forward-backward (FB) correlations and event-shape observables may be particulary useful first steps in this respect. We study the sensitivity of several different types of FB correlations and two event shape variables - transverse thrust and transverse thrust minor - to various sources of theoretical uncertainty: multiple parton interactions, parton showers, colour (re)connections, and hadronization. The power of each observable to furnish constraints on Monte Carlo models is illustrated by including comparisons between several recent, and qualitatively different, PYTHIA 6 tunes, for pp collisions at sqrt(s) = 900 GeV.Comment: 13 page

    On the Theory of Relativistic Strong Plasma Waves

    Full text link
    The influence of motion of ions and electron temperature on nonlinear one-dimensional plasma waves with velocity close to the speed of light in vacuum is investigated. It is shown that although the wavebreaking field weakly depends on mass of ions, the nonlinear relativistic wavelength essentially changes. The nonlinearity leads to the increase of the strong plasma wavelength, while the motion of ions leads to the decrease of the wavelength. Both hydrodynamic approach and kinetic one, based on Vlasov-Poisson equations, are used to investigate the relativistic strong plasma waves in a warm plasma. The existence of relativistic solitons in a thermal plasma is predicted.Comment: 13 pages, 8 figure

    Magnetic Field of Relativistic Nonlinear Plasma Wave

    Get PDF
    Longitudinal and transverse behavior of magnetic field of relativistic nonlinear three-dimensional plasma wave is investigated. It is shown that the magnetic field of the wave is different from zero and performs higher frequency oscillations compared to the plasma electron frequency. An increase in the nonlinearity leads to strengthening of magnetic field. The oscillations of magnetic field in transverse direction arise, that caused by the phase front curving of nonlinear plasma wave. The numerical results well conform with predictions of the analytical consideration of weakly-nonlinear case.Comment: 6 pages, 3 figure

    Excitation of nonlinear two-dimensional wake waves in radially-nonuniform plasma

    Full text link
    It is shown that an undesirable curvature of the wave front of two-dimensional nonlinear wake wave excited in uniform plasma by a relativistic charged bunch or laser pulse may be compensated by radial change of the equilibrium plasma density.Comment: 6 pages, 4 figure

    Gender and preferences at a young age: evidence from Armenia

    Get PDF
    We look at gender differences in competitiveness, risk preferences and altruism in a large sample of children and adolescents aged 7 to 16 in Armenia. Post-Soviet Armenia has few formal barriers to gender equality but is also characterized by a patrilineal kinship system and traditional gender roles. In contrast to research conducted in Western countries, we find that girls increase their performance more than boys in response to competition in a running task. We find no gender differences in the other three tasks we explore: skipping rope, a mathematical task, and a verbal task. We also find no difference in the willingness to compete in either the mathematical or the verbal task. In line with previous research, we find that boys are less altruistic and more risk taking than girls, and that the latter gap appears around the age of puberty
    corecore