93 research outputs found

    Quantum-Assisted Telescope Arrays

    Get PDF
    Quantum networks provide a platform for astronomical interferometers capable of imaging faint stellar objects. In a recent work [arXiv:1809.01659], we presented a protocol that circumvents transmission losses with efficient use of quantum resources and modest quantum memories. Here we analyze a number of extensions to that scheme. We show that it can be operated as a truly broadband interferometer and generalized to multiple sites in the array. We also analyze how imaging based on the quantum Fourier transform provides improved signal-to-noise ratio compared to classical processing. Finally, we discuss physical realizations including photon-detection-based quantum state transfer.Comment: 10 pages, 8 figures; v2 - clarifications and references; v3 - close to published versio

    Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap

    Get PDF
    A gyroid structure is a distinct morphology that is triply periodic and consists of minimal isosurfaces containing no straight lines. We have designed and synthesized amorphous silicon (a-Si) mid-infrared gyroid photonic crystals that exhibit a complete bandgap in infrared spectroscopy measurements. Photonic crystals were synthesized by deposition of a-Si/Al2O3 coatings onto a sacrificial polymer scaffold defined by two-photon lithography. We observed a 100% reflectance at 7.5 \mum for single gyroids with a unit cell size of 4.5 \mum, in agreement with the photonic bandgap position predicted from full-wave electromagnetic simulations, whereas the observed reflection peak shifted to 8 um for a 5.5 \mum unit cell size. This approach represents a simulation-fabrication-characterization platform to realize three-dimensional gyroid photonic crystals with well-defined dimensions in real space and tailored properties in momentum space

    Optical Interferometry with Quantum Networks

    Get PDF
    We propose a method for optical interferometry in telescope arrays assisted by quantum networks. In our approach, the quantum state of incoming photons along with an arrival time index is stored in a binary qubit code at each receiver. Nonlocal retrieval of the quantum state via entanglement-assisted parity checks at the expected photon arrival rate allows for direct extraction of the phase difference, effectively circumventing transmission losses between nodes. Compared to prior proposals, our scheme (based on efficient quantum data compression) offers an exponential decrease in required entanglement bandwidth. Experimental implementation is then feasible with near-term technology, enabling optical imaging of astronomical objects akin to well-established radio interferometers and pushing resolution beyond what is practically achievable classically.Comment: 7 + 6 pages, 3 + 1 figures; v2 - clarifications and further discussion of implementation; v3 - close to published versio
    corecore