4 research outputs found
A performance modeling of connectivity in vehicular ad hoc networks (VANETs)
An emerging new type of ad hoc networks is Vehicular Ad hoc NETworks (VANETs) which envision Inter-Vehicle Communications. Since, nodes in VANETs are both mobile as well as carrier of information; the network may not have full communication connectivity all the time and they may form several clusters where the nodes in each cluster may communicate with each other directly or indirectly. Multi-clustering happens whenever the minimum distance between two adjacent nodes becomes more than the transmission range of a node. Therefore, two important performance measures which affect the functionality in VANETs are communications connectivity and path availability . In this thesis, we study the statistical properties of these performance measures in VANETs at the steady state. First, it is assumed that the nodes travel along a multi-lane highway which allows vehicles to overtake each other. We derive the probability distributions of the node population size and node's location in the highway segments. Then, we determine the mean population size in a cluster and probability that nodes will form a single cluster. Then we extend the single highway model to a network of highways with arbitrary topology. We determine the joint distribution of the node populations in the highways' segments by application of the BCMP theorem. We model the number of clusters within the node population in a network path as a Markovian birth-death process. This model enables derivation of the probability distribution of the number of clusters and determination of mean durations of continuous communication path availability and unavailability times as functions of mobility and node arrival parameters. At the end, mean packet delay is presented for end to end communication in a path. We give numerical results which illustrate the effect of mobility on continuous communication path availability and communication delay. The results of this work may be helpful in studying the optimal node transmission range assignment, routing algorithms, network throughput, optimization of cross layer design schemes and MAC protocols in VANETs
A TDMA-based cooperative MAC protocol for cognitive networks with opportunistic energy harvesting
In this article, a cooperative medium access control (MAC) protocol called cooperative cognitive TDMA (CC-TDMA) for cognitive networks is proposed, which is based on time division multiple access (TDMA). The proposed protocol guarantees the quality of service (QoS) required by the primary network. In this regard, licensed users lease part of their spectrum to unlicensed users to retransmit the failed packets on the licensed users' behalf. By doing so, the unlicensed users obtain greater opportunity for data transmission, thus increasing their performance. The simulation and analytical results indicate that the CC-TDMA significantly improves the throughput and packet drop rate (PDR) of both licensed and unlicensed users compared to conventional TDMA
A survey and taxonomy on medium access control strategies for cooperative communication in wireless networks: research issues and challenges
Cooperative communication (CC) has been introduced as an effective technique to combat the detrimental effects of channel fading by exploiting spatial diversity gain, resulting in improved throughput and network performance. CC provides an opportunity for single antenna nodes to share their resources and construct a virtual antenna array at a lower cost. As a result, CC is considered an efficient solution for mobile nodes where some difficulties in terms of physical size and energy consumption arise from implanting multiple antennas. However, since CC is a new technology it brings new challenges that should be adequately addressed to render it a viable solution for wireless communication. Parameters such as link reliability, energy efficiency, overall throughput, and network performance are all affected by cooperative transmission. Besides, nodes' operation in physical layer should be coordinated with higher layers, especially with medium access control (MAC), for reliable operation in time varying channels. Accordingly, designing a cooperative MAC protocol that supports node coordination, error recovery and dynamic link optimization is important. In this paper, the most well-known cooperative MAC protocols are classified based on their channel access strategy into two groups: 1) contention-based and 2) contention-free schemes. At first, the preliminaries, constraints, and requirements for designing effective cooperative MAC protocols are illustrated. Then the current state-of-the-art cooperative MAC protocols are surveyed by benchmarking their scheduling schemes, characteristics, benefits, and drawbacks, in line with the suggested taxonomy. The cooperative MAC protocols are classified and analyzed based on their application and network utilized into five subsections, including vehicular networks, cognitive networks, multi-hop protocols, cross-layer protocols, and network coding-based protocols. Finally, challenges, open issues, and solutions are considered, which may be used in improving the available schemes or designing more reliable and effective cooperative MAC protocols in the future