28,902 research outputs found

    Collective excitations of BEC under anharmonic trap position jittering

    Full text link
    Collective excitations of a Bose-Einstein condensate under periodic oscillations of a quadratic plus quartic trap position has been studied. A coupled set of variational equations is derived for the width and the condensate wave function center. Analytical expressions for the growth of oscillation amplitudes in the resonance case are derived. It is shown that jittering of an anharmonic trap position can cause double resonance of the BEC width and the center of mass oscillation in the wide range of the BEC parameters values. The predictions of variational approach are confirmed by full numerical simulations of the 1D GP equation.Comment: This paper contains a manuscript - SolAnJPB.tex and figures (fig1 - fig1a.eps and fig1b.eps, fig2 - fig2.eps, fig3 - fig3a.eps and fig3b.eps, fig4 - fig4a.eps and fig4b.eps). The manuscript has been prepared using LATEX2e with the iopart class and the figures in encapsulated PostScrip

    Influence of Josephson current second harmonic on stability of magnetic flux in long junctions

    Full text link
    We study the long Josephson junction (LJJ) model which takes into account the second harmonic of the Fourier expansion of Josephson current. The dependence of the static magnetic flux distributions on parameters of the model are investigated numerically. Stability of the static solutions is checked by the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. New solutions which do not exist in the traditional model, have been found. Investigation of the influence of second harmonic on the stability of magnetic flux distributions for main solutions is performed.Comment: 4 pages, 6 figures, to be published in Proc. of Dubna-Nano2010, July 5-10, 2010, Russi

    Resonances in a trapped 3D Bose-Einstein condensate under periodically varying atomic scattering length

    Full text link
    Nonlinear oscillations of a 3D radial symmetric Bose-Einstein condensate under periodic variation in time of the atomic scattering length have been studied analytically and numerically. The time-dependent variational approach is used for the analysis of the characteristics of nonlinear resonances in the oscillations of the condensate. The bistability in oscillations of the BEC width is invistigated. The dependence of the BEC collapse threshold on the drive amplitude and parameters of the condensate and trap is found. Predictions of the theory are confirmed by numerical simulations of the full Gross-Pitaevski equation.Comment: 17 pages, 10 figures, submitted to Journal of Physics

    Adiabatic Compression of Soliton Matter Waves

    Full text link
    The evolution of atomic solitary waves in Bose-Einstein condensate (BEC) under adiabatic changes of the atomic scattering length is investigated. The variations of amplitude, width, and velocity of soliton are found for both spatial and time adiabatic variations. The possibility to use these variations to compress solitons up to very high local matter densities is shown both in absence and in presence of a parabolic confining potential.Comment: to appear in J.Phys.

    Floquet theory of neutrino oscillations in the earth

    Get PDF
    We review the Floquet theory of linear differential equations with periodic coefficients and discuss its applications to neutrino oscillations in matter of periodically varying density. In particular, we consider parametric resonance in neutrino oscillations which can occur in such media, and discuss implications for oscillations of neutrinos traversing the earth and passing through the earth's core.Comment: LaTeX, 28 pages, 8 eps figures. Contribution to the special issue of Yad. Fiz. dedicated to the memory of A.B. Migda

    Complete population transfer in a degenerate 3-level atom

    Full text link
    We find conditions required to achieve complete population transfer, via coherent population trapping, from an initial state to a designated final state at a designated time in a degenerate 3-level atom, where transitions are caused by an external interaction. Complete population transfer from an initially occupied state 1 to a designated state 2 occurs under two conditions. First, there is a constraint on the ratios of the transition matrix elements of the external interaction. Second, there is a constraint on the action integral over the interaction, or "area", corresponding to the phase shift induced by the external interaction. Both conditions may be expressed in terms of simple odd integers.Comment: 22 pages, 4 figure

    IL-17A Promotes Pulmonary B-1a Cell Differentiation via Induction of Blimp-1 Expression during Influenza Virus Infection

    Get PDF
    B-1 cells play a critical role in early protection during influenza infections by producing natural IgM antibodies. However, the underlying mechanisms involved in regulating this process are largely unknown. Here we found that during influenza infection pleural cavity B-1a cells rapidly infiltrated lungs, where they underwent plasmacytic differentiation with enhanced IgM production. This process was promoted by IL-17A signaling via induction of Blimp-1 expression and NF-kB activation in B-1a cells. Deficiency of IL-17A led to severely impaired B-1a-derived antibody production in the respiratory tract, resulting in a deficiency in viral clearance. Transfer of B-1a-derived natural antibodies rescued Il17a(-/-) mice from otherwise lethal infections. Together, we identify a critical function of IL-17A in promoting the plasmacytic differentiation of B-1a cells. Our findings provide new insights into the mechanisms underlying the regulation of pulmonary B-1a cell response against influenza infection.published_or_final_versio
    • …
    corecore