31 research outputs found

    Gene expression profiling to study racial differences after heart transplantation.

    Get PDF
    BackgroundThe basis for increased mortality after heart transplantation in African Americans and other non-Caucasian racial groups is poorly defined. We hypothesized that increased risk of adverse events is driven by biologic factors. To test this hypothesis in the Invasive Monitoring Attenuation through Gene Expression (IMAGE) study, we determined whether the event rate of the primary outcome of acute rejection, graft dysfunction, death, or retransplantation varied by race as a function of calcineurin inhibitor (CNI) levels and gene expression profile (GEP) scores.MethodsWe determined the event rate of the primary outcome, comparing racial groups, stratified by time after transplant. Logistic regression was used to compute the relative risk across racial groups, and linear modeling was used to measure the dependence of CNI levels and GEP score on race.ResultsIn 580 patients monitored for a median of 19 months, the incidence of the primary end point was 18.3% in African Americans, 22.2% in other non-Caucasians, and 8.5% in Caucasians (p < 0.001). There were small but significant correlations of race and tacrolimus trough levels to the GEP score. Tacrolimus levels were similar among the races. Of patients receiving tacrolimus, other non-Caucasians had higher GEP scores than the other racial groups. African American recipients demonstrated a unique decrease in expression of the FLT3 gene in response to higher tacrolimus levels.ConclusionsAfrican Americans and other non-Caucasian heart transplant recipients were 2.5-times to 3-times more likely than Caucasians to experience outcome events in the Invasive Monitoring Attenuation through Gene Expression study. The increased risk of adverse outcomes may be partly due to the biology of the alloimmune response, which is less effectively inhibited at similar tacrolimus levels in minority racial groups

    Impact of Mechanical Unloading on Microvasculature and Associated Central Remodeling Features of the Failing Human Heart

    Get PDF
    ObjectivesThis study investigates alterations in myocardial microvasculature, fibrosis, and hypertrophy before and after mechanical unloading of the failing human heart.BackgroundRecent studies demonstrated the pathophysiologic importance and significant mechanistic links among microvasculature, fibrosis, and hypertrophy during the cardiac remodeling process. The effect of left ventricular assist device (LVAD) unloading on cardiac endothelium and microvasculature is unknown, and its influence on fibrosis and hypertrophy regression to the point of atrophy is controversial.MethodsHemodynamic data and left ventricular tissue were collected from patients with chronic heart failure at LVAD implant and explant (n = 15) and from normal donors (n = 8). New advances in digital microscopy provided a unique opportunity for comprehensive whole-field, endocardium-to-epicardium evaluation for microvascular density, fibrosis, cardiomyocyte size, and glycogen content. Ultrastructural assessment was done with electron microscopy.ResultsHemodynamic data revealed significant pressure unloading with LVAD. This was accompanied by a 33% increase in microvascular density (p = 0.001) and a 36% decrease in microvascular lumen area (p = 0.028). We also identified, in agreement with these findings, ultrastructural and immunohistochemical evidence of endothelial cell activation. In addition, LVAD unloading significantly increased interstitial and total collagen content without any associated structural, ultrastructural, or metabolic cardiomyocyte changes suggestive of hypertrophy regression to the point of atrophy and degeneration.ConclusionsThe LVAD unloading resulted in increased microvascular density accompanied by increased fibrosis and no evidence of cardiomyocyte atrophy. These new insights into the effects of LVAD unloading on microvasculature and associated key remodeling features might guide future studies of unloading-induced reverse remodeling of the failing human heart

    Evidence of Glycolysis Up-Regulation and Pyruvate Mitochondrial Oxidation Mismatch During Mechanical Unloading of the Failing Human Heart: Implications for Cardiac Reloading and Conditioning

    Get PDF
    This study sought to investigate the effects of mechanical unloading on myocardial energetics and the metabolic perturbation of heart failure (HF) in an effort to identify potential new therapeutic targets that could enhance the unloading-induced cardiac recovery. The authors prospectively examined paired human myocardial tissue procured from 31 advanced HF patients at left ventricular assist device (LVAD) implant and at heart transplant plus tissue from 11 normal donors. They identified increased post-LVAD glycolytic metabolites without a coordinate increase in early, tricarboxylic acid (TCA) cycle intermediates. The increased pyruvate was not directed toward the mitochondria and the TCA cycle for complete oxidation, but instead, was mainly converted to cytosolic lactate. Increased nucleotide concentrations were present, potentially indicating increased flux through the pentose phosphate pathway. Evaluation of mitochondrial function and structure revealed a lack of post-LVAD improvement in mitochondrial oxidative functional capacity, mitochondrial volume density, and deoxyribonucleic acid content. Finally, post-LVAD unloading, amino acid levels were found to be increased and could represent a compensatory mechanism and an alternative energy source that could fuel the TCA cycle by anaplerosis. In summary, the authors report evidence that LVAD unloading induces glycolysis in concert with pyruvate mitochondrial oxidation mismatch, most likely as a result of persistent mitochondrial dysfunction. These findings suggest that interventions known to improve mitochondrial biogenesis, structure, and function, such as controlled cardiac reloading and conditioning, warrant further investigation to enhance unloading-induced reverse remodeling and cardiac recovery

    Cardiac Allograft Vasculopathy in Redo-transplants: Is it More or Less the Same the Second Time Around?

    Get PDF
    Purpose: Cardiac allograft vasculopathy (CAV) continues to hinder the long-term success of heart transplant recipients.  Redo-transplantation is currently the only definitive treatment for advanced CAV. We examined whether these patients are at similar CAV-risk with the second transplantMethods: Heart recipients from 1985 to 2011 at the UTAH program were included in the study and those with CAV as an indication for redo-transplantation were identified. CAV diagnosis was made by coronary angiography and based on the 2010 ISHLT standardized nomenclature for CAV. Patient demographics, rejection history, and CAV incidence were analyzed. Results: Of the 1,169 eligible patients, 135 (11.5%) developed CAV post their first transplant; 78 cases within 10 years and 54 beyond 10 years. The mean time to CAV was 6.58 years. Of the 135 patients who developed CAV, only 21 (15.5%) ended up requiring a redo-transplant. Of the 21 retransplanted patients, 4 (19.0%) developed CAV again; 2 patients within 10 years and 2 patients beyond 10 years indicating a similar risk for CAV occurrence for first and redo-transplant. Conclusions: Our results indicate that CAV is as likely to develop in redo-transplants despite recent advances in immunosuppression and the standardized use of lipid-lowering agents. Although outcomes in redo-transplantation for the indication of CAV are favorable, efforts to better understand and minimize CAV are needed, especially in the face of scarce donor organs

    Design and implementation of the international genetics and translational research in transplantation network

    Get PDF
    corecore