29 research outputs found

    Fluid inclusion, zircon U-Pb geochronology, and O-S isotopic constraints on the origin and evolution of ore-forming fluids of the tashvir and varmazyar epithermal base metal deposits, NW Iran

    Get PDF
    Tashvir and Varmazyar deposits are part of the epithermal ore system in the Taromā€“Hashtjin Metallogenic Belt (THMB), NW Iran. In both deposits, epithermal veins are hosted by Eocene volcanic-volcaniclastic rocks of the Karaj Formation and are spatially associated with late Eocene granitoid intrusions. The ore assemblages consist of pyrite, chalcopyrite, chalcocite, galena, and sphalerite (Fe-poor), with lesser amounts of bornite and minor psilomelane and pyrolusite. Fluid inclusion measurements from the Tashvir and Varmazyar revealed 182ā€“287 and 194ā€“285Ā°C formation temperatures and 2.7ā€“7.9 and 2.6ā€“6.4 wt.% NaCl equivalent salinities, respectively. The oxygen isotope data suggested that the mineralizing fluids originated dominantly from a magmatic fluid that mixed with meteoric waters. The sulfur isotope data indicated that the metal and sulfur sources were largely a mixture of magma and surrounding sedimentary rocks. LA-ICPā€“MS zircon Uā€“Pb dating of the granitoid intrusion at Tashvir and Varmazyar, yielded a weighted mean age of 38.34ā€“38.31 and 40.85 Ma, respectively, indicating that epithermal mineralization developed between 40.85 and 38.31 Ma. Our data indicated that fluid mixing along with some fluid boiling were the main drives for hydrothermal alteration and mineralization at Tashvir and Varmazyar. All these characteristics suggested an intermediate-sulfidation epithermal style of mineralization. The THMB is proposed to be prospective for precious and base metal epithermal mineralization. Considering the extensional tectonic setting, and lack of advanced argillic lithocaps and hypersaline fluid inclusions, the THMB possibly has less potential for economically important porphyry mineralization

    Tectonic controls on Ni and Cu contents of primary mantle-derived magmas for the formation of magmatic sulfide deposits

    No full text
    We have modeled the genesis of primary mantle-derived magma to explore the controls exerted on its Ni-Cu ore potential by water content, pressure, and mantle potential temperature (Tp). During decompression melting, Ni concentration in primary magma decreases with an increasing degree of melting, which is in contradiction to long-held understanding obtained from previous isobaric melting models. Pressure exerts a first-order control on the ore potential of primary plume-derived melt, such that plumes rising beneath thick lithosphere with melting paths terminating at relatively high pressure generate Ni-rich melts. Additionally, as plumes with higher Tp produce more Ni-rich melt at a higher pressure, the magmatism related to hotter plume-centers may have the greatest ore potential. On the other hand, the strong dependence of Cu behavior upon the presence or absence of residual sulfide is partly countered in decompression melting. Significant influences of mantle-contained water on Ni and Cu partitioning are restricted to low-degree melting. While release of H2O in lithosphere delamination may trigger voluminous magmatism, the Ni concentration in the melt is far lower than in melt generated from plumes. Furthermore, if isobaric melting dominates when the subcontinental lithospheric mantle (SCLM) is heated by underlying hotter plumes, the plume-lithosphere interaction plays no active role in the Ni ore potential of primary magma because derived melt volumes are relatively small. In subduction zones, flux-melting of the mantle wedge tends to generate cool Ni-poor melts, however hot subduction zones may produce magmas with increased metal concentrations. Overall, the anticipated ranges of Ni contents in primary melts are strongly controlled by tectonic setting, with a range of 100-300 ppm in subduction zones, 230-450 ppm in mid-ocean ridges, and 500-1300 ppm in plume suites. There are only minor differences in the Cu concentrations of primitive magmas generated from diverse tectonic settings, despite the variations in Cu partitioning behaviors

    Formation of the Chalukou High Fluorine-Type Mo (ā€“Znā€“Pb) Deposit, NE China: Constraints from Fluorite and Sphalerite Rare Earth Elements and Srā€“Nd Isotope Compositions

    No full text
    Fluorite is a widespread mineral in porphyry and hydrothermal vein Mo-polymetallic deposits. Here, fluorite is utilised as a probe to trace the fluid source and reveal the fluid evolution process in the Chalukou giant Mo (Pbā€“Zn) deposit, Northeast China, which is characterised as early porphyry Mo and later vein-style Znā€“Pb mineralisation. A detailed rare earth element (REE) and Srā€“Nd isotope study of fluorite combined with Sr isotopes of sphalerite is conducted for the Chalukou deposit. The chondrite-normalised REE patterns of fluorites from molybdenite veins show light REE (LREE)-enriched patterns, with negative Eu anomalies (Ī“Eu = 0.60) and weakly negative Y anomalies (Y/Y* = 0.72). The fluorites associated with sphalerite veins exhibit rare earth element (REE)-flat patterns with negative Eu anomalies (Ī“Eu = 0.65 to 0.99) and positive Y anomalies (Y/Y* = 1.37 to 3.08). In addition, during the progression from Mo to Znā€“Pb mineralisation, the total concentration of REEs decreases from 839 ppm to 53.7 ppm, and Y/Ho ratios increase from 22.1 to 92.5. These features may be explained by the different mobilities of REE complexes during fluid migration. The Eu anomalies are considered to be inherited from source fluids. All the initial 87Sr/86Sr ratios of fluorite and sphalerite are between those of ore-forming porphyries and wall rocks (rhyolite), with fluorite ratios ranging from 0.706942 to 0.707386 and sphalerite ratios varying from 0.705221 to 0.710417. The majority of ĪµNd(t) values of fluorite varying from āˆ’6.4 to āˆ’3.6 are also located between the ratios exhibited by ore-forming porphyries and rhyolite, whereas three ĪµNd(t) values of fluorites ranging from āˆ’0.26 to 0.36 are close to those of ore-forming porphyries. All the isotopic features indicate that the Sr-Nd isotope ratios of hydrothermal fluid are derived from porphyries and disturbed by fluidā€“rock reactions. Together with a two-stage Srā€“Nd isotope mixing model, we suggest that different sources and fluidā€“rock interactions (syn-ore intrusions and strata) finally influence the Srā€“Nd isotopes of the ore-forming fluids, which are recorded by the majority of fluorite and sphalerite

    Geochronologic and isotope geochemical constraints on magmatism and associated Wā€“Mo mineralization of the Jitoushan Wā€“Mo deposit, middleā€“lower Yangtze Valley

    No full text
    The Jitoushan Wā€“Mo ore body is a typical skarn-type deposit with the potential for porphyry Mo mineralization at depth. As it is newly discovered, only a few studies have been conducted on the geochronology and ore genesis of this deposit. The ore district consists of Cambrian to Silurian sedimentary and low-grade metasedimentary strata, intruded by granodiorite, diorite porphyry, granite porphyry, and quartz porphyry. Skarn Wā€“Mo ore bodies are hosted in the contact zone between the granodiorite and Cambrian limestone strata. Within the granodiorite near the contact zone, quartz vein type and disseminated sulphide mineralization are well developed. The Mo-bearing granite porphyry has been traced at depth by drilling. Our results reveal two discrete magmatic events at ca. 138 and ca. 127 Ma in the study area. The molybdenite Reā€“Os isochronal age of 136.6 Ā± 1.5 million years is consistent with the first magmatic event. The zircon Hf isotope (ĻµHf(t) =ā€‰āˆ’12.55āˆ’3.91), sulphide isotopes (Ī“Ā³ā“S = 3.32ā€“5.59ā€°), and Re content of molybdenite (Re(content) = 6.424ā€“19.07 Ī¼g) indicate that the ore-forming materials were mainly derived from the deep crust. The regional tectonic system switched from a Late Jurassic transpressive regime to an earliest Cretaceous extensional regime at ca. 145 Ma, and at ca. 138 Ma, the Jitoushan Wā€“Mo deposit formed in an extensional setting

    Mineral Chemistry of Pyrochlore Supergroup Minerals from the Boziguoer Nb-Ta-Zr-Rb-REE Deposit, NW China: Implications for Nb Enrichment by Alkaline Magma Differentiation

    No full text
    Alkaline rocks are generally enriched in rare metals (e.g., Nb, Ta, and Zr) and rare earth elements (REE), but the key factors controlling Nb-Ta-REE enrichment remain unclear. The Boziguoer Nb (Ta-Zr-Rb-REE) deposit in Southwest Tianshan (northern margin of Tarim Basin) is China’s largest, with reserves of 0.32 Mt Nb2O5 and 0.02 Mt Ta2O5. It is an alkaline felsic complex 4.45 km in length and 0.5–1.3 km in width, composed of alkalic granite and syenite, which can be subdivided into syenite I and syenite II. The main minerals in each lithofacies are the same (albite, K-feldspar, quartz, arfvedsonite and aegirine). The Nb in the deposit is mainly hosted in pyrochlore supergroup minerals, ubiquitous in alkalic granite and syenite of the Boziguoer deposit. The wide variation in cations (Ca, Na, REE, U, Th) in the A-site further classifies the Boziguoer pyrochlore supergroup minerals as fluornatropyrochlore, fluorcalciopyrochlore and fluorkenopyrochlore. All Boziguoer pyrochlore supergroup minerals are Nb-rich and Ta-poor at the B-site and dominated by F at the Y-site. These cation occurrence illustrate a new mechanism of substitution in the Boziguoer pyrochlore supergroup minerals (2Ca2+ +Ti4+ +4Ta5+ = REE3+ +A-V + 5Nb5+, where A-V is the A-site vacancy). This substitution mechanism is different from that in the pyrochlore supergroup minerals from other rocks such as carbonatite and nepheline syenite, which are dominated by the replacement of Ba (Rb, Sr) with Ca+ Na + A-V. In addition, the substitution of REE (mainly La, Ce) for Ca in the Boziguoer pyrochlore supergroup minerals is likely a result of either REE enrichment or a change in the REE partition coefficient during the evolution of the alkaline magma. Both the pyrochlore supergroup minerals and their host rocks display negative large ion lithophile element (LILE; K, Rb, Sr, and Ba) anomalies, positive high-field-strength element (HFSE) anomalies and light rare earth element (LREE) enrichment with negative Eu anomalies. This is consistent with the crystallization of the pyrochlore supergroup minerals from the magma rather than from hydrothermal fluids, suggesting a magmatic origin. These findings indicate that the mechanisms of pyrochlore supergroup minerals crystallization in alkaline magma may be significantly different from those in carbonatite and nepheline syenite, and that magmatic differentiation processes may have played a role in the enrichment of the Boziguoer deposit by Nb
    corecore