3,866 research outputs found
Recommended from our members
Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.
Background: There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location.
Methodology/principal findings: To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3âUTR on the cDNA encoding Chondroitinase ABC with that of ÎČ-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate.
Conclusion/significance: Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for gene therapy, and of direct relevance to strategies aimed at expressing foreign proteins in mammalian cells, in particular bacterial proteins
Structurally dynamic spin market networks
The agent-based model of stock price dynamics on a directed evolving complex
network is suggested and studied by direct simulation. The stationary regime is
maintained as a result of the balance between the extremal dynamics, adaptivity
of strategic variables and reconnection rules. The inherent structure of node
agent "brain" is modeled by a recursive neural network with local and global
inputs and feedback connections. For specific parametric combination the
complex network displays small-world phenomenon combined with scale-free
behavior. The identification of a local leader (network hub, agent whose
strategies are frequently adapted by its neighbors) is carried out by repeated
random walk process through network. The simulations show empirically relevant
dynamics of price returns and volatility clustering. The additional emerging
aspects of stylized market statistics are Zipfian distributions of fitness.Comment: 13 pages, 5 figures, accepted in IJMPC, references added, minor
changes in model, new results and modified figure
Risk, Uncertainty, and the Perceived Threat of Terrorist Attacks: Evidence of Flight-to-Quality
© 2013 World Scientific Publishing Company and Midwest Finance Association. Information provided by the US Department of Homeland Security regarding potential terrorist attacks significantly affects US Treasury securities markets. When the government announces heightened terror alert levels, investors\u27 perceptions of risk increase and investors purchase 1-month and 1-year Treasury bills and 3-year, 5-year, 7-year, and 10-year US Treasuries in a flight-to-quality episode. Partial anticipation of increased threat level announcements is stronger than the anticipation of announcements regarding the federal funds rate during the 10 days prior to an announcement
A cell lineage analysis of segmentation in the chick embryo
We have studied the lineage history of the progenitors of the somite mesoderm and of the neural tube in the chick embryo by injecting single cells with the fluorescent tracer, rhodamine-lysine-dextran. We find that, although single cells within the segmental plate give rise to discrete clones in the somites to which they contribute, neither the somites nor their component parts (sclerotome, dermatome, myotome or their rostral and caudal halves) are `compartments' in the sense defined in insects. Cells in the rostral two thirds or so of the segmental plate contribute only to somite tissue and divide about every 10 h, while those in the caudal portions of this structure contribute both to the somites and to intermediate and lateral plate mesoderm derivatives. In the neural tube, the descendants of individual prospective ventral horn cells remain together within the horn, with a cycle time of 10 h.
We have also investigated the role of the cell division cycle in the formation and subsequent development of somites. A single treatment of 2-day chick embryos with heat shock or a variety of drugs that affect the cell cycle all produce repeated anomalies in the pattern of somites and vertebrae that develop subsequent to the treatment. The interval between anomalies is 6-7 somites (or a multiple of this distance), which corresponds to 10 h. This interval is identical to that measured for the cell division cycle. Given that cell division synchrony is seen in the presomitic mesoderm, we suggest that the cell division cycle plays a role in somite formation.
Finally, we consider the mechanisms responsible for regionalization of derivatives of the somite, and conclude that it is likely that both cell interactions and cell lineage history are important in the determination of cell fates
Double Exponential Instability of Triangular Arbitrage Systems
If financial markets displayed the informational efficiency postulated in the
efficient markets hypothesis (EMH), arbitrage operations would be
self-extinguishing. The present paper considers arbitrage sequences in foreign
exchange (FX) markets, in which trading platforms and information are
fragmented. In Kozyakin et al. (2010) and Cross et al. (2012) it was shown that
sequences of triangular arbitrage operations in FX markets containing 4
currencies and trader-arbitrageurs tend to display periodicity or grow
exponentially rather than being self-extinguishing. This paper extends the
analysis to 5 or higher-order currency worlds. The key findings are that in a
5-currency world arbitrage sequences may also follow an exponential law as well
as display periodicity, but that in higher-order currency worlds a double
exponential law may additionally apply. There is an "inheritance of
instability" in the higher-order currency worlds. Profitable arbitrage
operations are thus endemic rather that displaying the self-extinguishing
properties implied by the EMH.Comment: 22 pages, 22 bibliography references, expanded Introduction and
Conclusion, added bibliohraphy reference
Quantum cat maps with spin 1/2
We derive a semiclassical trace formula for quantized chaotic transformations
of the torus coupled to a two-spinor precessing in a magnetic field. The trace
formula is applied to semiclassical correlation densities of the quantum map,
which, according to the conjecture of Bohigas, Giannoni and Schmit, are
expected to converge to those of the circular symplectic ensemble (CSE) of
random matrices. In particular, we show that the diagonal approximation of the
spectral form factor for small arguments agrees with the CSE prediction. The
results are confirmed by numerical investigations.Comment: 26 pages, 3 figure
Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems
Voltage-dependent ion channels determine the electric properties of axonal
cell membranes. They not only allow the passage of ions through the cell
membrane but also contribute to an additional charging of the cell membrane
resulting in the so-called capacitance loading. The switching of the channel
gates between an open and a closed configuration is intrinsically related to
the movement of gating charge within the cell membrane. At the beginning of an
action potential the transient gating current is opposite to the direction of
the current of sodium ions through the membrane. Therefore, the excitability is
expected to become reduced due to the influence of a gating current. Our
stochastic Hodgkin-Huxley like modeling takes into account both the channel
noise -- i.e. the fluctuations of the number of open ion channels -- and the
capacitance fluctuations that result from the dynamics of the gating charge. We
investigate the spiking dynamics of membrane patches of variable size and
analyze the statistics of the spontaneous spiking. As a main result, we find
that the gating currents yield a drastic reduction of the spontaneous spiking
rate for sufficiently large ion channel clusters. Consequently, this
demonstrates a prominent mechanism for channel noise reduction.Comment: 18 page
Halothane hepatitis with renal failure treated with hemodialysis and exchange transfusion
A 38-year-old white female, hepatitis B antigen negative, developed fluminating hepatic failure associated with oliguria and severe azotemia after two halothane anesthesia and without exposure to other hepatotoxic drugs or blood transfusions. She was treated with multiple hemodialysis and exchange blood transfusion. The combined treatment corrected the uremic abnormalities and improved her level of consciousness. The liver and kidney function gradually improved, and she made a complete recovery, the first recorded with hepatic and renal failure under these post-anesthetic conditions. Further evaluation of this combined treatment used for this patient is warranted. © 1974 The Japan Surgical Society
Drivers and outcomes of work alienation: reviving a concept
This article sheds new light on an understudied construct in mainstream management theory, namely, work alienation.
This is an important area of study because previous research indicates that work alienation is associated with important
individual and organizational outcomes. We tested four antecedents of work alienation: decision-making autonomy, task
variety, task identity, and social support. Moreover, we examined two outcomes of alienation: deviance and performance, the
former measured 1 year after the independent variables were measured, and the latter as rated by supervisors. We present
evidence from a sample of 283 employees employed at a construction and consultancy organization in the United Kingdom.
The results supported the majority of our hypotheses, indicating that alienation is a worthy concept of exploration in the
management sciences
Debates: Does Information Theory Provide a New Paradigm for Earth Science? Emerging Concepts and Pathways of Information Physics
Entropy and Information are key concepts not only in Information Theory but also in Physics: historically in the fields of Thermodynamics, Statistical and Analytical Mechanics, and, more recently, in the field of Information Physics. In this paper we argue that Information Physics reconciles and generalizes statistical, geometric, and mechanistic views on information. We start by demonstrating how the use and interpretation of Entropy and Information coincide in Information Theory, Statistical Thermodynamics, and Analytical Mechanics, and how this can be taken advantage of when addressing Earth Science problems in general and hydrological problems in particular. In the second part we discuss how Information Physics provides ways to quantify Information and Entropy from fundamental physical principles. This extends their use to cases where the preconditions to calculate Entropy in the classical manner as an aggregate statistical measure are not met. Indeed, these preconditions are rarely met in the Earth Sciences due either to limited observations or the far-from-equilibrium nature of evolving systems. Information Physics therefore offers new opportunities for improving the treatment of Earth Science problems.info:eu-repo/semantics/publishedVersio
- âŠ