163 research outputs found

    Universal approximation of multi-copy states and universal quantum lossless data compression

    Full text link
    We have proven that there exists a quantum state approximating any multi-copy state universally when we measure the error by means of the normalized relative entropy. While the qubit case was proven by Krattenthaler and Slater (IEEE Trans. IT, 46, 801-819 (2000); quant-ph/9612043), the general case has been open for more than ten years. For a deeper analysis, we have solved the mini-max problem concerning `approximation error' up to the second order. Furthermore, we have applied this result to quantum lossless data compression, and have constructed a universal quantum lossless data compression

    Quantum state estimation and large deviations

    Full text link
    In this paper we propose a method to estimate the density matrix \rho of a d-level quantum system by measurements on the N-fold system. The scheme is based on covariant observables and representation theory of unitary groups and it extends previous results concerning the estimation of the spectrum of \rho. We show that it is consistent (i.e. the original input state \rho is recovered with certainty if N \to \infty), analyze its large deviation behavior, and calculate explicitly the corresponding rate function which describes the exponential decrease of error probabilities in the limit N \to \infty. Finally we discuss the question whether the proposed scheme provides the fastest possible decay of error probabilities.Comment: LaTex2e, 40 pages, 2 figures. Substantial changes in Section 4: one new subsection (4.1) and another (4.2 was 4.1 in the previous version) completely rewritten. Minor changes in Sect. 2 and 3. Typos corrected. References added. Accepted for publication in Rev. Math. Phy

    Clean Positive Operator Valued Measures

    Full text link
    In quantum mechanics the statistics of the outcomes of a measuring apparatus is described by a positive operator valued measure (POVM). A quantum channel transforms POVM's into POVM's, generally irreversibly, thus loosing some of the information retrieved from the measurement. This poses the problem of which POVM's are "undisturbed", namely they are not irreversibly connected to another POVM. We will call such POVM clean. In a sense, the clean POVM's would be "perfect", since they would not have any additional "extrinsical" noise. Quite unexpectedly, it turns out that such cleanness property is largely unrelated to the convex structure of POVM's, and there are clean POVM's that are not extremal and vice-versa. In this paper we solve the cleannes classification problem for number n of outcomes n<=d (d dimension of the Hilbert space), and we provide a a set of either necessary or sufficient conditions for n>d, along with an iff condition for the case of informationally complete POVM's for n=d^2.Comment: Minor changes. amsart 21 pages. Accepted for publication on J. Math. Phy

    The asymptotic entanglement cost of preparing a quantum state

    Get PDF
    We give a detailed proof of the conjecture that the asymptotic entanglement cost of preparing a bipartite state \rho is equal to the regularized entanglement of formation of \rho.Comment: 7 pages, no figure

    Quantum Cloning Machines of a d-level System

    Full text link
    The optimal N to M (M>NM>N) quantum cloning machines for the d-level system are presented. The unitary cloning transformations achieve the bound of the fidelity.Comment: Revtex, 4 page

    On the Phase Covariant Quantum Cloning

    Get PDF
    It is known that in phase covariant quantum cloning the equatorial states on the Bloch sphere can be cloned with a fidelity higher than the optimal bound established for universal quantum cloning. We generalize this concept to include other states on the Bloch sphere with a definite zz component of spin. It is shown that once we know the zz component, we can always clone a state with a fidelity higher than the universal value and that of equatorial states. We also make a detailed study of the entanglement properties of the output copies and show that the equatorial states are the only states which give rise to separable density matrix for the outputs.Comment: Revtex4, 6 pages, 5 eps figure

    Optimal N-to-M Cloning of Quantum Coherent States

    Get PDF
    The cloning of continuous quantum variables is analyzed based on the concept of Gaussian cloning machines, i.e., transformations that yield copies that are Gaussian mixtures centered on the state to be copied. The optimality of Gaussian cloning machines that transform N identical input states into M output states is investigated, and bounds on the fidelity of the process are derived via a connection with quantum estimation theory. In particular, the optimal N-to-M cloning fidelity for coherent states is found to be equal to MN/(MN+M-N).Comment: 3 pages, RevTe

    Vacuum Fluctuations, Geometric Modular Action and Relativistic Quantum Information Theory

    Full text link
    A summary of some lines of ideas leading to model-independent frameworks of relativistic quantum field theory is given. It is followed by a discussion of the Reeh-Schlieder theorem and geometric modular action of Tomita-Takesaki modular objects associated with the quantum field vacuum state and certain algebras of observables. The distillability concept, which is significant in specifying useful entanglement in quantum information theory, is discussed within the setting of general relativistic quantum field theory.Comment: 26 pages. Contribution for the Proceedings of a Conference on Special Relativity held at Potsdam, 200

    Kitaev's quantum double model from a local quantum physics point of view

    Full text link
    A prominent example of a topologically ordered system is Kitaev's quantum double model D(G)\mathcal{D}(G) for finite groups GG (which in particular includes G=Z2G = \mathbb{Z}_2, the toric code). We will look at these models from the point of view of local quantum physics. In particular, we will review how in the abelian case, one can do a Doplicher-Haag-Roberts analysis to study the different superselection sectors of the model. In this way one finds that the charges are in one-to-one correspondence with the representations of D(G)\mathcal{D}(G), and that they are in fact anyons. Interchanging two of such anyons gives a non-trivial phase, not just a possible sign change. The case of non-abelian groups GG is more complicated. We outline how one could use amplimorphisms, that is, morphisms A→Mn(A)A \to M_n(A) to study the superselection structure in that case. Finally, we give a brief overview of applications of topologically ordered systems to the field of quantum computation.Comment: Chapter contributed to R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason (eds), Advances in Algebraic Quantum Field Theory (Springer 2015). Mainly revie

    Strong subadditivity inequality for quantum entropies and four-particle entanglement

    Get PDF
    Strong subadditivity inequality for a three-particle composite system is an important inequality in quantum information theory which can be studied via a four-particle entangled state. We use two three-level atoms in Λ\Lambda configuration interacting with a two-mode cavity and the Raman adiabatic passage technique for the production of the four-particle entangled state. Using this four-particle entanglement, we study for the first time various aspects of the strong subadditivity inequality.Comment: 5 pages, 3 figures, RevTeX4, submitted to PR
    • …
    corecore