22 research outputs found

    On Kotzig's conjecture for graphs with a regular path-connectedness

    Get PDF
    AbstractKotzig (see Bondy and Murty (1976)) conjectured that there exists no graph with the property that every pair of vertices is connected by a unique path of length k, k > 2. Here we prove this conjecture for k â©ľ 12

    Quantum-Inspired Distributed Memetic Algorithm

    Get PDF
    This paper proposed a novel distributed memetic evolutionary model, where four modules distributed exploration, intensified exploitation, knowledge transfer, and evolutionary restart are coevolved to maximize their strengths and achieve superior global optimality. Distributed exploration evolves three independent populations by heterogenous operators. Intensified exploitation evolves an external elite archive in parallel with exploration to balance global and local searches. Knowledge transfer is based on a point-ring communication topology to share successful experiences among distinct search agents. Evolutionary restart adopts an adaptive perturbation strategy to control search diversity reasonably. Quantum computation is a newly emerging technique, which has powerful computing power and parallelized ability. Therefore, this paper further fuses quantum mechanisms into the proposed evolutionary model to build a new evolutionary algorithm, referred to as quantum-inspired distributed memetic algorithm (QDMA). In QDMA, individuals are represented by the quantum characteristics and evolved by the quantum-inspired evolutionary optimizers in the quantum hyperspace. The QDMA integrates the superiorities of distributed, memetic, and quantum evolution. Computational experiments are carried out to evaluate the superior performance of QDMA. The results demonstrate the effectiveness of special designs and show that QDMA has greater superiority compared to the compared state-of-the-art algorithms based on Wilcoxon’s rank-sum test. The superiority is attributed not only to good cooperative coevolution of distributed memetic evolutionary model, but also to superior designs of each special component

    Fuzzy Adaptation Algorithms’ Control for Robot Manipulators with Uncertainty Modelling Errors

    No full text
    A novel fuzzy control scheme with adaptation algorithms is developed for robot manipulators’ system. At the beginning, one adjustable parameter is introduced in the fuzzy logic system, the robot manipulators system with uncertain nonlinear terms as the master device and a reference model dynamic system as the slave robot system. To overcome the limitations such as online learning computation burden and logic structure in conventional fuzzy logic systems, a parameter should be used in fuzzy logic system, which composes fuzzy logic system with updated parameter laws, and can be formed for a new fashioned adaptation algorithms controller. The error closed-loop dynamical system can be stabilized based on Lyapunov analysis, the number of online learning computation burdens can be reduced greatly, and the different kinds of fuzzy logic systems with fuzzy rules or without any fuzzy rules are also suited. Finally, effectiveness of the proposed approach has been shown in simulation example
    corecore