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Abstract

Kotzig (see Bondy and Murty (1976)) conjectured that there exists no graph with the
property that every pair of vertices is connected by a unique path of length &, k> 2. Here we
prove this conjecture for k>12.

1. Introduction

We shall consider simple graphs, that is, graphs without loops and multiple
edges. All notations and definitions not given here can be found in Bondy and
Murty [1].

In 1974 Kotzig stated the following conjecture (see [1. p. 246, Problem 4]).

There exists no graph with the property that every pair of vertices is connected by
a unique path of length k (k> 2).

Let us call a graph with this property a P(k)-graph. If a P(k)-graph (say G) exists for
some k>2, then G is connected. Furthermore, because each edge of G belongs to
exactly one (k+1)-cycle, G is uniquely edge-decomposable into (k+ 1)-cycles, and
hence is Eulerian. Kotzig has proved the following lemma [2].

Lemma 1.1. (i) A P(k)-graph G contains a 2n-cycle with 3<n<k—4.
(ii) A P(k)-graph G contains no 2n-cycle with ne{2,k—3,k—2,k—1,k}; and for
2<k <9 there is no P(k)-graph.

In the following theorem we prove this conjetcure for k> 12.

Theorem 1.2. There exists no P(k)-graph with k>12.
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For the proof of this theorem we shall suppose by contradiction that such a graph
exists. By Lemma 1.1 a P(k)-graph G contains a 2(k —4)-cycle, thus, in the rest of this
paper we assume such a cycle is given and denote it by C* =wow,; @, -+ W2 g 4y— 1Wo-
C* divides the plane into three disjoint sets called the interior and exterior of C* and
C* itself. The interior and exterior of C* are denoted by int C* and ext C*, respec-
tively. We assume that all the vertices and edges of G which are not in C* are drawn
int C*. If P is a path from w; to w; such that V(P)nV (C*)={w;, w;}, E(P)nE(C*)=0,
then we call P a bridge-path. w; and w; are called the vertices of attachment of P. Two
bridge-paths P, P, are skew if there are four distinct vertices w;,, w;,, w;,, @;, such
that w;, and w;, are vertices of attachment of P,, w;, and w;, are vertices of attachment
of P, and the four vertices appear in the cyclic order w;,, w;,, @;,, w; on C*. Let P be
a (ug, uy)-path of length I, P=uou;u,---u; the segment of P between u; and u; is
denoted by u;Pu; if i<j or u;Pu; if i>j. We use »;C*w; and w;C*w; to denote
W;0; 41 -+ W;— 1 0; and w;w;_, --- W;4 1 @; (the subscripts are considered mod 2(k —4),
respectively). A cycle is called an even if the number of its edges is even. A cycle is odd
if the number of its edges is odd.

2, Some structural lemmas
Below we shall prove several facts about a P(k)-graph.

Lemma 2.1. If C,, is a 2n-cycle of a P(k)-graph G(n<k), then there is no (uq, Uo)-path
P of length at least (k—n) such that V(Cy,)nV (P)={uo}. Hence G does not contain
a bridge-path P from w; to w; such that 0;C* w;Pw; is an even cycle.

Proof. Let C,,=uoly -~ thy_ qUpthy1 - Ugy—qtg. If P=vov;---v_,_qly is a path
from vy to C,, such that u,eV(C,,), v;¢V(Cy,), i=0,1,---,(k—n—1), then
Py=0oUy - Ug—p—yUoUylis ** Uy U, ANd Py =0oUy -+ gy yloUay—y1 *** Up+ Uy a1
two paths of length k from v to u,. This contradicts the assumption of G. [

Lemma 2.2. For k> 12, a P(k)-graph consists of C* and some bridge-paths of length at
most 4 and furthermore, the internal vertices of every bridge-path have degree 2 and two
vertices of attachment of every bridge-path are different.

Proof. Let G be a P(k)-graph for some k>12. Since G is connected, then for every
vertex u ¢ V' (C*) we may choose a longest path P from u to some vertex of C*, say w;
such that V(P)n ¥ (C*)={w;}. Since C* has length 2(k —4) the length [ of P is at most
three by Lemma 2.1. Now, we distinguish between three cases depending upon L

Case 1. [=3. Let P=uu,u,w; be a path from u to C*, u, u,, u ¢V (C*). We prove
that d(u;)=d(u;)=d(u)=2.

By Lemma 2.1 N@u)c V(C*)UV(P). If d(u)>2, then we have vy,v26N (u), vy #u,,
va#us. If ugel{vy, v,}, say uy=uv,, then v,eV(C*), say v,=w; and by Lemma 2.1.
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wjuuuy w;C*w;is an odd cycle, hence w;uu; w;C*w; is an even cycle, a contradiction.
Hvy,v,€V (C*), say vy, =w; and v, =y, then w;uu, u; 0;C*w; and myuu,u 0, C*wy are
two odd cycles. Consequently w;uw,C*w; is an even cycle, again a contradiction. It
follows that d(u)=2.

Suppose now d(u,)>2.

Subcase 1.1. uu,eB(G). In this case we may choose veN(u,), v#uy, v#u. If
veV (C*), then v=w; for some j and wu,u;w;C*w; is an odd cycle. Hence
wjuut0;C* w; is an even cycle. If v¢ 1/ (C*), then vu,uu, w; is a path of length 4 from
v to C*. These are impossible. Therefore, Subcase 1.1 fails.

Subcase 1.2. uu,¢E(G). Since d(u)=2, some vertex w; of C* is adjacent to u and
wjuuu10;C*w; is an odd cycle. If d(u,)>2, then we may choose veN(u,) such that
v#EuU, vEu. If veV(C*). If v'=u,, then v=w; and w,uu;0;C*w; is an odd cycle.
Hence wu,uw;C*w, is an even cycle. If v¢ V' (C*), then there exists a vertex v’ such that
v'eE(G), v'#u,, v' e V(C*) or v'=u,;. If v'=u,, then uu,vu,w, is a path of length
4 from u to C*. If v'eV(C*), say v’ =y, then w,vuuw;C*w; is an even cycle since
Ui, 0;C* @y and wjuu,uyw;C* w; are odd cycles. These contradictions imply that
Subcase 1.2 fails.

Hence we have d(u,)=2.

Since d(u)=d(u,)=2, if uu,eE(G), then there is no (u,u,)-path of length k(k>2).
Hence N(u)nV(C*)#0. Let uw;eE(G). Thus u,u,uw; is a path of length 3 from u, to
C* and by the proof for d(u)=2, we have d(u,)=2.

If w; = w; that is, w;uu,uw;= w;, is a cycle, then there is no path of length k from u to
w;. Hence w; #w;.

Case 2. 1=2. Let uu,w; be a path from u to C* such that u,u,¢V (C*). Since I=2,
N@u)c V(C*)u{u,} (otherwise, we have u'¢V(C*)u{u,}, u'ucE(G) then u'uu w; is
a path from u’ to C*. By Case 1 we have d(u)=d(u)=d(u,)=2). If d(1) > 2, then we have
wj, eV (C*) such that uw;uweE(G) and by Lemma 2.1 wuu,w,C*w; and
wyui 0,C* wy are odd cycles. Thus w;uw, C*w; is an even cycle, a contradiction. Hence
we have d(u)=2, that is, there is a vertex wV (C*) such that w;uu,w;C*w; is an odd
cycle, so uyuw; is a path from uy to C*, u;, u¢V{(C*). We may assume this is a longest
path from u,; to C* (otherwise by the proof for /=3 we have d(u;)=2), and then by using
the arguments of the proof for d(u)=2 we can easily show that d{(u;)=2.

Now d(u)=d(u,)=2, If uw;cE(G), then there is no (u,w;)-path of length k. Hence we
have a vertex w;# w; such that w;ucE(G), that is, P=wu,uw; is a bridge-path.

Case 3. I=1. Let uwgeE(G) and u¢lV (C*). By the assumption of /=1 we know
NueV (C*).

If d(u)>2, then there exist two vertices w;, &N (u)NV(C*) such that wuw;C*w;
and w,uw;C* w, are odd cycles and therefore w, =uw;C*w, is an even cycle, a contra-
diction. So d(u)=2 and there is w;€V (C*) such that w; # w; and w;uw; is a bridge-path.
This completes the proof of Lemma 2.2. [

Lemma 2.3. If k=12, then any two bridge-paths in a P(k)-graph G are not skew.
Hence G is a planar graph.
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Proof. Let w; P w;,, and w; P, w;, denote two skew bridge-paths with lengths [ and
I', respectively. Then C* can be written as w; L w;,Ly; L3w;, Law;,. Let [; denote
the length of L;, i=1,2,3,4, and /;>1. By Lemma 2.1, o, P,w; L,0;, L, »;, and
w;, Prw; Lyw;, Lyw;, are two odd cycles and hence w;, P,w;, Law;, Pyw;, Lyw;, and
w;, Prw; Lyw; P, w; Liw;, are two even cycles. Thus, by Lemma 1.1 we have

U+l +1+1,<2(k—4),
U+l +1+1,<2(k—4).
Since [, + 1, + 5 +1,=2(k—4) we have
U+i<l +1s,
V+i<l,+1,.

Now we consider the following three possible cases.
Case 1 ll 213 and 12214.
We consider the closed walk:

w: a),-OleilL3w,-l Pza)joszilL:;(Ule‘;wio

with length L'={+1"+1,+2l;+ 1, which is an even number. In this case there exists
a vertex w;€V(L,)—{w; } such that there are two different (w;,, »;)-paths of
length 4L’ from o, to w;: @, Py, Lyw; Pyw;,Lyw; and o, Lyw; Lyw; Lyw;. If
3L’ +1;=k+1, then there exists a vertex w;eV (L,)— {w;,} such that there are two
different paths of length k from w; to w;. Hence 3L’ +1; <k, that is

W +i+L+1)<4
Similarly, we consider the closed walk
W' o, Pyw, Lyw; Pyw;, Lyo, Lyw; Lyo;,
which has length L"=1"42l,+1+1; +15, and we can prrove 3L" +/, <k that is
W +1+1L,+1,)<4.
Hence,
W +I+ L+ L) A3 +1+ 1, +1,) <8,
that is,
[+ +(k—4)<8.

Thus we have k<10 by I, = 1. This contradicts the assumption of k> 12.
Case 2. Iy <13, and 1, =1,.
In this case we consider the closed walks: W’ and

1, D T ' T 7
W” w; Pyw;, Ly, Pyw;, Lyw;, Lo, Lyw;,
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with length L' =1+41'+2l, +1,+!, and we can prove 1L"’ +[; <k, that is,
W +1+1 +15)<4.

Hence
U HI+ L+ L) +H50 + 141, +1,) <8,

that is
I'+1+(k—4)<8.

This is impossible.
Case 3. Iy <l and I, <l  or Iy =15 and 1, <l,.
Similar to Case 1 and Case 2, we can prove that Case 3 is impossible. [

Lemma 24. If k>12, then any cycle of a P(k)-graph G containing exactly two
bridge-paths has length at most 8.

Proof. Let w; P, w;, and w; P, w;, be two bridge-paths of G and P, P, have length
land I', respectively. Then [, I’ <4. By Lemma 2.3. P, and P, are not skew, hence four
vertices of attachment of P, and P, appear in the cyclic order w;,w; ,w;, , ; on C*.
Set C*=w; L, w;, Ly w; Lyw; Lyw;,. Let l; denote length of L;,i=1, 2, 3, 4. The cycle
containing exactly two bridge-paths P, and P, is unique: w; Py @;, L, w; P, w;, Lyw;,.
If w;;=0w;, and w; =w;, then this cycle has length [+1'<8. Now, by supposing
Wi, # Wj,, 12214, 11215, we can see that the closed walk

W: o, PiwiLyw; Pyw; Lyw; Lyw; Lyw;,

has length L=1+1"+2l,+1, + 13 which is an even number.
By assumption there is a vertex w;eV (L,)—{w;,} such that there are two paths
from w;, to w;:

wj0L3 th4wi0L1wi and wjonwj‘L4wi0P1wilLla)i

each having length $L. If $L+1, >k +1, then there is a w;€ V(L,)— {w;,} such that
there are two paths of length k from o; to w;. Hence 1L +1, <k, that is,

T+ L+ L+l + 3L+ 1L+ 1+ 1)<k
and so
I+L+1+1,<8. O

Lemma 2.5. If k> 12, then any three bridge-paths of a P(k)-graph G are not in the same
cycle.

Proof. Assume by contradiction that w; Piw;,, w; P,w; and wy Pswy, are three
bridge-paths in the same cycle C, P;, P, and P; have lengths I’ and !",
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respectively. Then by Lemma 2.4, 6 vertices of attachment of P,, P, and P appear in
the cyclic order w;,, w;, w;, @;, w,, wy, on C* Thus we can denote C* by
i Ly, Lyw; Lyw; Lyoy Lswy Lew;, and length of L; by [,i=1,2,...,6. By
Lemma 2.4 we have

I+l +1 +1,+1s+15<8,
I+l 413+, +1"+1<8, (x)
L+lL+U+1L+1"+1<8.

Hence
L+ L+ s+ ) F2(0+ 1"+ + L+ 1, + 1) <24,

Since li+L+l+1,+1s+1g=2(k—4) we have (k—4)+(+1"++1,+1s) <12
Thus if k> 14, this is impossible.

If k=13, then I+0I'+1"+1,+1,+1s<3. Only the following case is possible
l,=14=1g=0, I=I'=1"=1. In this case by (%) we have |, =l;=1;=6 and w; = w,,
Wj,=w;,, 0, =awy,. But C*UP UP,UP; is not P(13)-graph. Hence, there exists
a bridge-path different from P,, P, and P3, say ;P w;. Without loss of generality, let
wdV(L,)—{w;}. If o;=w,;, then w;is only w;, or w,, and P=w;w;=P, by the
above proof. This is impossible. If w; # w; , w; and w;,eV (L,), then P,P, and P; are in
the same cycle. Hence P=P,. If w;# w;,, w;, and w;¢V(L,), then w;eV (L;) or
w;eV(Ls)thus P and P, are skew, this contradicts Lemma 2.3. It follows that P, P,
and P; are not in the same cycle.

If k=12, then I, +1,+1¢+1+1'+1"<4. We consider the following three cases:

Casel. I=I'=l"=1landl,=1,=14=0. By (*) we have I, 3,5 <6, similar to k=13,
we can prove that this case fails.

Case 2. I=I'=1"=1, l,=1 and [,=14=0. By (x) [,<5, I35, l5<6, since
w;, Py Ly w0, Py0; Lyow;, and  w Pyw, Lsw,, are three odd cycles,
hence I; <4, 13<4,Is<6. By 2(k—4)=1, + |, + 13+ 1, +15+1s we have: 16=2(k—4)=
Ltb+h+l+is+lg=li+l,+13+1s<4+1+4+6=15 Therefore Case 2 is
impossible.

Case 3. |=2'=1"=1and I,=[,=1=0. By(*) we have [, <6, [; <5, [5 <5, similar
to Case 2 we have 1, <6, [3<4, [s<4.

Thus 16=2(k—4)=1, +1;+!5< 14 a contradiction.

This completes the proof of Lemma 2.5. [

3. Proof of Theorem 1.2
If for some k=12, there is a P(k)-graph G, since C* is not a P(k)-graph, then

G contains some bridge-paths. Hence by Lemma 2.3 and Lemma 2.5 there exist two
bridge-paths, say w; Piw;, and w; P,wj,, such that C*=w; L w;, Lyw; Lyw; Lyw;,
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and for every vertex weV (L,)—{w;,, w;,} or weV (L3)— {w;,, w;,} d(w)=2. Since G is
uniquely edge-decompossable into (k + 1)-cycles, each of bridge-paths is contained in
some (k + 1)-cycle. By Lemma 2.4 and Lemma 2.5, the (k+ 1)-cycle containing P, is
unique inleillflwiD and the (k+ 1)-cycle containing P, is unique wjona)jll_,zwjn.
Let P,, P, have length [ and [', respectively, and let L; have length [;, i=1,2,3, 4,
we have [j+I=k+1 and l3+!'=k+1, hence I;+I3+!+1'=2(k+1). But
Li+ls<lhi+ L+ 3+1,=2(k—4) and I<4, I'kK4 we have [ +l3+]I+1I'S
2(k—4)+8=2k a contradiction. It follows that there is no P(k)-graph for k> 12.
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