

DISCRETE MATHEMATICS

Discrete Mathematics 135 (1994) 387-393

Note

On Kotzig's conjecture for graphs with a regular path-connectedness

Keyi Xing^{a, b}, Baosheng Hu^b

^a Department of Applied Mathematics, Xidian University, China ^b Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China

Received 21 September 1990; revised 27 January 1993

Abstract

Kotzig (see Bondy and Murty (1976)) conjectured that there exists no graph with the property that every pair of vertices is connected by a unique path of length k, k>2. Here we prove this conjecture for $k \ge 12$.

1. Introduction

We shall consider simple graphs, that is, graphs without loops and multiple edges. All notations and definitions not given here can be found in Bondy and Murty [1].

In 1974 Kotzig stated the following conjecture (see [1. p. 246, Problem 4]).

There exists no graph with the property that every pair of vertices is connected by a unique path of length k (k > 2).

Let us call a graph with this property a P(k)-graph. If a P(k)-graph (say G) exists for some k > 2, then G is connected. Furthermore, because each edge of G belongs to exactly one (k+1)-cycle, G is uniquely edge-decomposable into (k+1)-cycles, and hence is Eulerian. Kotzig has proved the following lemma [2].

Lemma 1.1. (i) A P(k)-graph G contains a 2n-cycle with $3 \le n \le k-4$.

(ii) A P(k)-graph G contains no 2n-cycle with $n \in \{2, k-3, k-2, k-1, k\}$; and for 2 < k < 9 there is no P(k)-graph.

In the following theorem we prove this conjetcure for $k \ge 12$.

Theorem 1.2. There exists no P(k)-graph with $k \ge 12$.

0012-365X/94/\$07.00 © 1994—Elsevier Science B.V. All rights reserved SSDI 0012-365X (93) E 0106-E

For the proof of this theorem we shall suppose by contradiction that such a graph exists. By Lemma 1.1 a P(k)-graph G contains a 2(k-4)-cycle, thus, in the rest of this paper we assume such a cycle is given and denote it by $C^* = \omega_0 \omega_1 \omega_2 \cdots \omega_{2(k-4)-1} \omega_0$. C^* divides the plane into three disjoint sets called the interior and exterior of C^* and C^* itself. The interior and exterior of C^* are denoted by int C^* and ext C^* , respectively. We assume that all the vertices and edges of G which are not in C^* are drawn int C*. If P is a path from ω_i to ω_i such that $V(P) \cap V(C^*) = \{\omega_i, \omega_i\}, E(P) \cap E(C^*) = \emptyset$, then we call P a bridge-path. ω_i and ω_i are called the vertices of attachment of P. Two bridge-paths P_1 , P_2 are skew if there are four distinct vertices ω_{i_0} , ω_{i_1} , ω_{j_0} , ω_{j_1} such that ω_{i_0} and ω_{i_1} are vertices of attachment of P_1 , ω_{j_0} and ω_{j_1} are vertices of attachment of P₂ and the four vertices appear in the cyclic order $\omega_{i_0}, \omega_{j_0}, \omega_{i_1}, \omega_{j_1}$ on C*. Let P be a (u_0, u_1) -path of length $l, P = u_0 u_1 u_2 \cdots u_l$ the segment of P between u_i and u_i is denoted by $u_i P u_i$ if i < j or $u_i \overline{P} u_i$ if i > j. We use $\omega_i C^* \omega_i$ and $\omega_i \overline{C}^* \omega_i$ to denote $\omega_i \omega_{i+1} \cdots \omega_{i-1} \omega_i$ and $\omega_i \omega_{i-1} \cdots \omega_{i+1} \omega_i$ (the subscripts are considered mod 2(k-4), respectively). A cycle is called an even if the number of its edges is even. A cycle is odd if the number of its edges is odd.

2. Some structural lemmas

Below we shall prove several facts about a P(k)-graph.

Lemma 2.1. If C_{2n} is a 2n-cycle of a P(k)-graph $G(n \le k)$, then there is no (u_0, v_0) -path P of length at least (k-n) such that $V(C_{2n}) \cap V(P) = \{u_0\}$. Hence G does not contain a bridge-path P from ω_i to ω_j such that $\omega_i C^* \omega_j \overline{P} \omega_i$ is an even cycle.

Proof. Let $C_{2n} = u_0 u_1 \cdots u_{n-1} u_n u_{n+1} \cdots u_{2n-1} u_0$. If $P = v_0 v_1 \cdots v_{k-n-1} u_0$ is a path from v_0 to C_{2n} such that $u_0 \in V(C_{2n})$, $v_i \notin V(C_{2a})$, $i = 0, 1, \cdots, (k-n-1)$, then $P_1 = v_0 v_1 \cdots v_{k-n-1} u_0 u_1 u_2 \cdots u_{n-1} u_n$ and $P_2 = v_0 v_1 \cdots v_{k-n-1} u_0 u_{2n-1} \cdots u_{n+1} u_n$ are two paths of length k from v_0 to u_n . This contradicts the assumption of G. \Box

Lemma 2.2. For $k \ge 12$, a P(k)-graph consists of C^* and some bridge-paths of length at most 4 and furthermore, the internal vertices of every bridge-path have degree 2 and two vertices of attachment of every bridge-path are different.

Proof. Let G be a P(k)-graph for some $k \ge 12$. Since G is connected, then for every vertex $u \notin V(C^*)$ we may choose a longest path P from u to some vertex of C^* , say ω_i such that $V(P) \cap V(C^*) = \{\omega_i\}$. Since C^* has length 2(k-4) the length l of P is at most three by Lemma 2.1. Now, we distinguish between three cases depending upon l.

Case 1. l=3. Let $P=uu_2u_1\omega_i$ be a path from u to C^* , $u, u_2, u_1\notin V(C^*)$. We prove that $d(u_1)=d(u_2)=d(u)=2$.

By Lemma 2.1 $N(u) \subset V(C^*) \cup V(P)$. If d(u) > 2, then we have $v_1, v_2 \in N(u), v_1 \neq u_2$, $v_2 \neq u_2$. If $u_1 \in \{v_1, v_2\}$, say $u_1 = v_1$, then $v_2 \in V(C^*)$, say $v_2 = \omega_i$ and by Lemma 2.1.

 $\omega_j u u_2 u_1 \omega_i C^* \omega_j$ is an odd cycle, hence $\omega_j u u_1 \omega_i C^* \omega_j$ is an even cycle, a contradiction. If $v_1, v_2 \in V(C^*)$, say $v_1 = \omega_j$ and $v_2 = \omega_k$, then $\omega_j u u_2 u_1 \omega_i C^* \omega_j$ and $\omega_k u u_2 u_1 \omega_i C^* \omega_k$ are two odd cycles. Consequently $\omega_j u \omega_k C^* \omega_j$ is an even cycle, again a contradiction. It follows that d(u) = 2.

Suppose now $d(u_2) > 2$.

Subcase 1.1. $uu_1 \in B(G)$. In this case we may choose $v \in N(u_2)$, $v \neq u_1$, $v \neq u$. If $v \in V(C^*)$, then $v = \omega_j$ for some j and $\omega_j u_2 u_1 \omega_i C^* \omega_j$ is an odd cycle. Hence $\omega_j u_2 uu_1 \omega_i C^* \omega_j$ is an even cycle. If $v \notin V(C^*)$, then $v u_2 uu_1 \omega_i$ is a path of length 4 from v to C^* . These are impossible. Therefore, Subcase 1.1 fails.

Subcase 1.2. $uu_1 \notin E(G)$. Since d(u) = 2, some vertex ω_j of C^* is adjacent to u and $\omega_j uu_2 u_1 \omega_i C^* \omega_j$ is an odd cycle. If $d(u_2) > 2$, then we may choose $v \in N(u_2)$ such that $v \neq u$, $v \neq u_1$. If $v \in V(C^*)$. If $v' = u_1$, then $v = \omega_k$ and $\omega_k u_2 u_1 \omega_i C^* \omega_k$ is an odd cycle. Hence $\omega_k u_2 u \omega_j C^* \omega_k$ is an even cycle. If $v \notin V(C^*)$, then there exists a vertex v' such that $vv' \in E(G)$, $v' \neq u_2$, $v' \in V(C^*)$ or $v' = u_1$. If $v' = u_1$, then $uu_2 vu_1 \omega_i$ is a path of length 4 from u to C^* . If $v' \in V(C^*)$, say $v' = \omega_k$, then $\omega_k vu_2 u \omega_j C^* \omega_k$ is an even cycle since $\omega_k vu_2 u_1 \omega_i C^* \omega_k$ and $\omega_j uu_2 u_1 \omega_i C^* \omega_j$ are odd cycles. These contradictions imply that Subcase 1.2 fails.

Hence we have $d(u_2) = 2$.

Since $d(u) = d(u_2) = 2$, if $uu_1 \in E(G)$, then there is no (u, u_2) -path of length k(k>2). Hence $N(u) \cap V(C^*) \neq \emptyset$. Let $u\omega_j \in E(G)$. Thus $u_1 u_2 u\omega_j$ is a path of length 3 from u_1 to C^* and by the proof for d(u) = 2, we have $d(u_1) = 2$.

If $\omega_i = \omega_j$ that is, $\omega_i u_1 u_2 u \omega_j = \omega_i$ is a cycle, then there is no path of length k from u to ω_i . Hence $\omega_i \neq \omega_j$.

Case 2. l=2. Let $uu_1\omega_i$ be a path from u to C^* such that $u, u_1\notin V(C^*)$. Since l=2, $N(u) \subset V(C^*) \cup \{u_1\}$ (otherwise, we have $u'\notin V(C^*) \cup \{u_1\}$, $u'u\in E(G)$ then $u'uu_1\omega_i$ is a path from u' to C^* . By Case 1 we have $d(u') = d(u) = d(u_1) = 2$). If d(u) > 2, then we have $\omega_j, \omega_k \in V(C^*)$ such that $u\omega_j, u\omega_k \in E(G)$ and by Lemma 2.1 $\omega_j uu_1\omega_i C^*\omega_j$ and $\omega_k uu_1\omega_i C^*\omega_k$ are odd cycles. Thus $\omega_j u\omega_k C^*\omega_j$ is an even cycle, a contradiction. Hence we have d(u) = 2, that is, there is a vertex $\omega_j \in V(C^*)$ such that $\omega_j uu_1\omega_i C^*\omega_j$ is an odd cycle, so $u_1 u\omega_j$ is a path from u_1 to $C^*, u_1, u\notin V(C^*)$. We may assume this is a longest path from u_1 to C^* (otherwise by the proof for l=3 we have $d(u_1)=2$), and then by using the arguments of the proof for d(u)=2 we can easily show that $d(u_1)=2$.

Now $d(u) = d(u_1) = 2$, If $u\omega_i \in E(G)$, then there is no (u, ω_i) -path of length k. Hence we have a vertex $\omega_j \neq \omega_i$ such that $\omega_j u \in E(G)$, that is, $P = \omega_i u_1 u \omega_j$ is a bridge-path.

Case 3. l=1. Let $u\omega_i \in E(G)$ and $u \notin V(C^*)$. By the assumption of l=1 we know $N(u) \in V(C^*)$.

If d(u) > 2, then there exist two vertices $\omega_j, \omega_k \in N(u) \cap V(C^*)$ such that $\omega_j u \omega_i C^* \omega_j$ and $\omega_k u \omega_i C^* \omega_k$ are odd cycles and therefore $\omega_k = u \omega_j C^* \omega_k$ is an even cycle, a contradiction. So d(u) = 2 and there is $\omega_j \in V(C^*)$ such that $\omega_i \neq \omega_j$ and $\omega_i u \omega_j$ is a bridge-path. This completes the proof of Lemma 2.2. \Box

Lemma 2.3. If $k \ge 12$, then any two bridge-paths in a P(k)-graph G are not skew. Hence G is a planar graph. **Proof.** Let $\omega_{i_0}P_1\omega_{i_1}$, and $\omega_{j_0}P_2\omega_{j_1}$ denote two skew bridge-paths with lengths l and l', respectively. Then C^* can be written as $\omega_{i_0}L_1\omega_{j_0}L_2\omega_{i_1}L_3\omega_{j_1}L_4\omega_{i_0}$. Let l_i denote the length of L_i , i=1, 2, 3, 4, and $l_i \ge 1$. By Lemma 2.1, $\omega_{i_0}P_1\omega_{i_1}\bar{L}_2\omega_{j_0}\bar{L}_1\omega_{i_0}$ and $\omega_{j_0}P_2\omega_{j_1}\bar{L}_3\omega_{i_1}\bar{L}_2\omega_{j_0}$ are two odd cycles and hence $\omega_{j_0}P_2\omega_{j_1}L_4\omega_{i_0}P_1\omega_{i_1}\bar{L}_2\omega_{j_0}$ and $\omega_{j_0}P_2\omega_{j_1}\bar{L}_3\omega_{i_1}\bar{P}_1\omega_{i_0}L_1\omega_{j_0}$ are two even cycles. Thus, by Lemma 1.1 we have

$$l' + l_4 + l + l_2 \leq 2(k - 4),$$

$$l' + l_3 + l + l_1 \leq 2(k - 4).$$

Since $l_1 + l_2 + l_3 + l_4 = 2(k-4)$ we have

$$l'+l \leqslant l_1+l_3$$

$$l'+l \leqslant l_2+l_4$$

Now we consider the following three possible cases.

Case 1. $l_1 \ge l_3$ and $l_2 \ge l_4$.

We consider the closed walk:

$$W: \omega_{i_0} P_1 \omega_{i_1} L_3 \omega_{j_1} P_2 \omega_{j_0} L_2 \omega_{i_1} L_3 \omega_{j_1} L_4 \omega_{i_0}$$

with length $L' = l + l' + l_2 + 2l_3 + l_4$ which is an even number. In this case there exists a vertex $\omega_i \in V(L_2) - \{\omega_{i_1}\}$ such that there are two different (ω_{i_0}, ω_i) -paths of length $\frac{1}{2}L'$ from ω_{i_0} to ω_i : $\omega_{i_0}P_1\omega_{i_1}L_3\omega_{j_1}\overline{P}_2\omega_{j_0}L_2\omega_i$ and $\omega_{i_0}\overline{L}_4\omega_{j_1}\overline{L}_3\omega_{i_1}\overline{L}_2\omega_i$. If $\frac{1}{2}L' + l_1 \ge k + 1$, then there exists a vertex $\omega_j \in V(L_1) - \{\omega_{j_0}\}$ such that there are two different paths of length k from ω_j to ω_i . Hence $\frac{1}{2}L' + l_1 \le k$, that is

 $\frac{1}{2}(l'+l+l_3+l_1) \leq 4.$

Similarly, we consider the closed walk

$$W': \omega_{i_1} \overline{P}_1 \omega_{i_0} \overline{L}_4 \omega_{j_1} \overline{P}_2 \omega_{j_0} \overline{L}_1 \omega_{i_0} \overline{L}_4 \omega_{j_1} \overline{L}_3 \omega_{i_1}$$

which has length $L'' = l' + 2l_4 + l + l_1 + l_3$, and we can prrove $\frac{1}{2}L'' + l_2 \leq k$ that is

$$\frac{1}{2}(l'+l+l_2+l_4) \leq 4.$$

Hence,

$$\frac{1}{2}(l'+l+l_1+l_3)+\frac{1}{2}(l'+l+l_2+l_4) \leq 8,$$

that is,

 $l+l'+(k-4) \leq 8.$

Thus we have $k \le 10$ by $l, l \ge 1$. This contradicts the assumption of $k \ge 12$. Case 2. $l_1 < l_3$, and $l_2 \ge l_4$.

In this case we consider the closed walks: W' and

$$W'': \omega_{j_1} \overline{P}_2 \omega_{j_2} \overline{L}_1 \omega_{i_2} P_1 \omega_{i_1} \overline{L}_2 \omega_{j_2} \overline{L}_1 \omega_{i_2} \overline{L}_4 \omega_{j_1}$$

with length $L''' = l + l' + 2l_1 + l_2 + l_4$ and we can prove $\frac{1}{2}L''' + l_3 \leq k$, that is,

$$\frac{1}{2}(l'+l+l_1+l_3) \leq 4.$$

Hence

 $\frac{1}{2}(l'+l+l_1+l_3)+\frac{1}{2}(l'+l+l_2+l_4) \leq 8,$

that is

 $l'+l+(k-4) \leq 8.$

This is impossible.

Case 3. $l_1 < l_2$ and $l_2 < l_4$ or $l_1 \ge l_3$ and $l_2 < l_4$.

Similar to Case 1 and Case 2, we can prove that Case 3 is impossible. \Box

Lemma 2.4. If $k \ge 12$, then any cycle of a P(k)-graph G containing exactly two bridge-paths has length at most 8.

Proof. Let $\omega_{i_0}P_1\omega_{i_1}$ and $\omega_{j_0}P_2\omega_{j_1}$ be two bridge-paths of G and P_1 , P_2 have length l and l', respectively. Then $l, l' \leq 4$. By Lemma 2.3. P_1 and P_2 are not skew, hence four vertices of attachment of P_1 and P_2 appear in the cyclic order $\omega_{i_0}, \omega_{i_1}, \omega_{j_0}, \omega_{j_1}$ on C^* . Set $C^* = \omega_{i_0}L_1\omega_{i_1}L_2\omega_{j_0}L_3\omega_{j_1}L_4\omega_{i_0}$. Let l_i denote length of $L_i, i = 1, 2, 3, 4$. The cycle containing exactly two bridge-paths P_1 and P_2 is unique: $\omega_{i_0}P_1\omega_{i_1}L_2\omega_{j_0}P_2\omega_{j_1}L_4\omega_{i_0}$. If $\omega_{i_0} = \omega_{j_1}$ and $\omega_{j_0} = \omega_{i_1}$, then this cycle has length $l+l' \leq 8$. Now, by supposing $\omega_{i_1} \neq \omega_{j_0}, l_2 \geq l_4, l_1 \geq l_3$, we can see that the closed walk

$$W: \omega_{i_1} P_1 \omega_{i_0} \overline{L}_4 \omega_{j_1} \overline{P}_2 \omega_{j_0} L_3 \omega_{j_1} L_4 \omega_{i_0} L_1 \omega_{i_1}$$

has length $L = l + l' + 2l_4 + l_1 + l_3$ which is an even number.

By assumption there is a vertex $\omega_i \in V(L_1) - \{\omega_{i_0}\}$ such that there are two paths from ω_{i_0} to ω_i :

$$\omega_{j_0}L_3 \omega_{j_1}L_4 \omega_{i_0}L_1 \omega_i$$
 and $\omega_{j_0}P_2 \omega_{j_1}L_4 \omega_{i_0}P_1 \omega_{i_1}\overline{L_1}\omega_{i_0}$

each having length $\frac{1}{2}L$. If $\frac{1}{2}L + l_2 \ge k + 1$, then there is a $\omega_j \in V(L_2) - \{\omega_{i_j}\}$ such that there are two paths of length k from ω_i to ω_j . Hence $\frac{1}{2}L + l_2 \le k$, that is,

 $\frac{1}{2}(l_1+l_2+l_3+l_4)+\frac{1}{2}(l_2+l_4+l+l') \leq k$

and so

 $l+l_2+l'+l_4 \leq 8.$

Lemma 2.5. If $k \ge 12$, then any three bridge-paths of a P(k)-graph G are not in the same cycle.

Proof. Assume by contradiction that $\omega_{i_0}P_1\omega_{i_1}$, $\omega_{j_0}P_2\omega_{j_1}$ and $\omega_{k_0}P_3\omega_{k_1}$ are three bridge-paths in the same cycle C, P_1 , P_2 and P_3 have lengths l, l' and l'',

respectively. Then by Lemma 2.4, 6 vertices of attachment of P_1 , P_2 and P_3 appear in the cyclic order ω_{i_0} , ω_{i_1} , ω_{j_0} , ω_{j_1} , ω_{k_0} , ω_{k_1} on C^* . Thus we can denote C^* by $\omega_{i_0}L_1\omega_{i_1}L_2\omega_{j_0}L_3\omega_{j_1}L_4\omega_{k_0}L_5\omega_{k_1}L_6\omega_{i_0}$ and length of L_i by l_i , i=1, 2, ..., 6. By Lemma 2.4 we have

$$l+l_{2}+l'+l_{4}+l_{5}+l_{6} \leq 8,$$

$$l+l_{2}+l_{3}+l_{4}+l''+l_{6} \leq 8,$$

$$(*)$$

$$l_{1}+l_{2}+l'+l_{4}+l''+l_{6} \leq 8.$$

Hence

$$(l_2+l_2+l_3+l_4+l_5+l_6)+2(l+l''+l''+l_2+l_4+l_6) \le 24.$$

Since $l_1 + l_2 + l_3 + l_4 + l_5 + l_6 = 2(k-4)$ we have $(k-4) + (l+l''+l_2+l_4+l_6) \le 12$. Thus if $k \ge 14$, this is impossible.

If k=13, then $l+l'+l''+l_2+l_4+l_6 \leq 3$. Only the following case is possible $l_2=l_4=l_6=0$, l=l'=l''=1. In this case by (*) we have $l_1=l_3=l_5=6$ and $\omega_{i_0}=\omega_{k_1}$, $\omega_{j_0}=\omega_{i_1}$, $\omega_{j_1}=\omega_{k_0}$. But $C^*\cup P_1\cup P_2\cup P_3$ is not P(13)-graph. Hence, there exists a bridge-path different from P_1 , P_2 and P_3 , say $\omega_i P \omega_j$. Without loss of generality, let $\omega_i \notin V(L_1) - \{\omega_{i_0}\}$. If $\omega_i = \omega_{i_1}$, then ω_j is only ω_{i_0} or ω_{k_0} and $P = \omega_i \omega_j = P_1$ by the above proof. This is impossible. If $\omega_i \neq \omega_{i_0}$, ω_{i_1} and $\omega_j \notin V(L_1)$, then P, P_2 and P_3 are in the same cycle. Hence $P = P_1$. If $\omega_i \neq \omega_{i_0}$, ω_{i_1} and $\omega_j \notin V(L_1)$, then $\omega_j \in V(L_3)$ or $\omega_j \in V(L_5)$ thus P and P_1 are skew, this contradicts Lemma 2.3. It follows that P_1 , P_2 and P_3 are not in the same cycle.

If k = 12, then $l_2 + l_4 + l_6 + l + l' + l'' \leq 4$. We consider the following three cases:

Case 1. l=l'=l''=1 and $l_2=l_4=l_6=0$. By (*) we have $l_1, l_3, l_5 \le 6$, similar to k=13, we can prove that this case fails.

Case 2. l = l' = l'' = 1, $l_2 = 1$ and $l_4 = l_6 = 0$. By (*) $l_1 \le 5$, $l_3 \le 5$, $l_5 \le 6$, since $\omega_{i_0} P_1 \omega_{i_1} \overline{L}_1 \omega_{i_0}, \omega_{j_0} P_2 \omega_{j_1} \overline{L}_3 \omega_{j_0}$ and $\omega_{k_0} P_3 \omega_{k_0} \overline{L}_5 \omega_{k_0}$ are three odd cycles, hence $l_1 \le 4$, $l_3 \le 4$, $l_5 \le 6$. By $2(k-4) = l_1 + l_2 + l_3 + l_4 + l_5 + l_6$ we have: $16 = 2(k-4) = l_1 + l_2 + l_3 + l_4 + l_5 + l_6 = l_1 + l_2 + l_3 + l_5 \le 4 + 1 + 4 + 6 = 15$. Therefore Case 2 is impossible.

Case 3. l=2, l'=l''=1 and $l_2=l_4=l_6=0$. By(*) we have $l_1 \le 6, l_3 \le 5, l_5 \le 5$, similar to Case 2 we have $l_1 \le 6, l_3 \le 4, l_5 \le 4$.

Thus $16 = 2(k-4) = l_1 + l_3 + l_5 \le 14$ a contradiction.

This completes the proof of Lemma 2.5. \Box

3. Proof of Theorem 1.2

If for some $k \ge 12$, there is a P(k)-graph G, since C* is not a P(k)-graph, then G contains some bridge-paths. Hence by Lemma 2.3 and Lemma 2.5 there exist two bridge-paths, say $\omega_{i_0}P_1\omega_{i_1}$ and $\omega_{j_0}P_2\omega_{j_1}$, such that $C^* = \omega_{i_0}L_1\omega_{i_1}L_2\omega_{j_0}L_3\omega_{j_1}L_4\omega_{i_0}$

and for every vertex $\omega \in V(L_1) - \{\omega_{i_0}, \omega_{i_1}\}$ or $\omega \in V(L_3) - \{\omega_{j_0}, \omega_{j_1}\} d(\omega) = 2$. Since G is uniquely edge-decompossable into (k+1)-cycles, each of bridge-paths is contained in some (k+1)-cycle. By Lemma 2.4 and Lemma 2.5, the (k+1)-cycle containing P_1 is unique $\omega_{i_0}P_1\omega_{i_1}\overline{L}_1\omega_{i_0}$ and the (k+1)-cycle containing P_2 is unique $\omega_{j_0}P_2\omega_{j_1}\overline{L}_2\omega_{j_0}$. Let P_1 , P_2 have length l and l', respectively, and let L_i have length l_i , i=1, 2, 3, 4, we have $l_1+l=k+1$ and $l_3+l'=k+1$, hence $l_1+l_3+l+l'=2(k+1)$. But $l_1+l_3 \leqslant l_1+l_2+l_3+l_4=2(k-4)$ and $l \leqslant 4$, $l' \leqslant 4$ we have $l_1+l_3+l+l+l' \leqslant 2(k-4)+8=2k$ a contradiction. It follows that there is no P(k)-graph for $k \ge 12$.

Acknowledgement

The author is grateful to an anonymous referee for his comments and help.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North Holland, Amsterdam, 1976).
- [2] A. Kotzig, Selected open problems in graph theory, in: J.A. Bondy and U.S.R. Murty, eds., Graph Theory and Related Topics (Academic Press, New York, 1979) 358-367.