ELSEVIER

Note

On Kotzig's conjecture for graphs with a regular path-connectedness

Keyi Xing ${ }^{\mathbf{a}, \mathbf{b}}$, Baosheng $\mathrm{Hu}^{\mathbf{b}}$
${ }^{\text {a }}$ Department of Applied Mathematics, Xidian University, China
${ }^{\text {b }}$ Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China

Received 21 September 1990; revised 27 January 1993

Abstract

Kotzig (see Bondy and Murty (1976)) conjectured that there exists no graph with the property that every pair of vertices is connected by a unique path of length $k, k>2$. Here we prove this conjecture for $k \geqslant 12$.

1. Introduction

We shall consider simple graphs, that is, graphs without loops and multiple edges. All notations and definitions not given here can be found in Bondy and Murty [1].

In 1974 Kotzig stated the following conjecture (see [1. p. 246, Problem 4]).
There exists no graph with the property that every pair of vertices is connected by a unique path of length $k(k>2)$.

Let us call a graph with this property a $P(k)$-graph. If a $P(k)$-graph (say G) exists for some $k>2$, then G is connected. Furthermore, because each edge of G belongs to exactly one $(k+1)$-cycle, G is uniquely edge-decomposable into $(k+1)$-cycles, and hence is Eulerian. Kotzig has proved the following lemma [2].

Lemma 1.1. (i) $A P(k)$-graph G contains a $2 n$-cycle with $3 \leqslant n \leqslant k-4$.
(ii) $A P(k)$-graph G contains no $2 n$-cycle with $n \in\{2, k-3, k-2, k-1, k\}$; and for $2<k<9$ there is no $P(k)$-graph.

In the following theorem we prove this conjetcure for $k \geqslant 12$.
Theorem 1.2. There exists no $P(k)$-graph with $k \geqslant 12$.

For the proof of this theorem we shall suppose by contradiction that such a graph exists. By Lemma 1.1 a $P(k)$-graph G contains a $2(k-4)$-cycle, thus, in the rest of this paper we assume such a cycle is given and denote it by $C^{*}=\omega_{0} \omega_{1} \omega_{2} \cdots \omega_{2(k-4)-1} \omega_{0}$. C^{*} divides the plane into three disjoint sets called the interior and exterior of C^{*} and C^{*} itself. The interior and exterior of C^{*} are denoted by int C^{*} and ext C^{*}, respectively. We assume that all the vertices and edges of G which are not in C^{*} are drawn int C^{*}. If P is a path from ω_{i} to ω_{j} such that $V(P) \cap V\left(C^{*}\right)=\left\{\omega_{i}, \omega_{j}\right\}, E(P) \cap E\left(C^{*}\right)=\emptyset$, then we call P a bridge-path. ω_{i} and ω_{j} are called the vertices of attachment of P. Two bridge-paths P_{1}, P_{2} are skew if there are four distinct vertices $\omega_{i_{0}}, \omega_{i_{1}}, \omega_{j_{0}}, \omega_{j_{1}}$ such that $\omega_{i_{0}}$ and $\omega_{i_{1}}$ are vertices of attachment of $P_{1}, \omega_{j_{0}}$ and $\omega_{j_{1}}$ are vertices of attachment of P_{2} and the four vertices appear in the cyclic order $\omega_{i_{0}}, \omega_{j_{0}}, \omega_{i_{1}}, \omega_{j_{1}}$ on C^{*}. Let P be a (u_{0}, u_{1})-path of length $l, P=u_{0} u_{1} u_{2} \cdots u_{l}$ the segment of P between u_{i} and u_{j} is denoted by $u_{i} P u_{j}$ if $i<j$ or $u_{i} \bar{P} u_{j}$ if $i>j$. We use $\omega_{i} C^{*} \omega_{j}$ and $\omega_{i} \bar{C}^{*} \omega_{j}$ to denote $\omega_{i} \omega_{i+1} \cdots \omega_{j-1} \omega_{j}$ and $\omega_{i} \omega_{i-1} \cdots \omega_{j+1} \omega_{j}$ (the subscripts are considered $\bmod 2(k-4)$, respectively). A cycle is called an even if the number of its edges is even. A cycle is odd if the number of its edges is odd.

2. Some structural lemmas

Below we shall prove several facts about a $P(k)$-graph.
Lemma 2.1. If $C_{2 n}$ is a $2 n$-cycle of a $P(k)$-graph $G(n \leqslant k)$, then there is no $\left(u_{0}, v_{0}\right)$-path P of length at least $(k-n)$ such that $V\left(C_{2 n}\right) \cap V(P)=\left\{u_{0}\right\}$. Hence G does not contain a bridge-path P from ω_{i} to ω_{j} such that $\omega_{i} C^{*} \omega_{j} \bar{P} \omega_{i}$ is an even cycle.

Proof. Let $C_{2 n}=u_{0} u_{1} \cdots u_{n-1} u_{n} u_{n+1} \cdots u_{2 n-1} u_{0}$. If $P=v_{0} v_{1} \cdots v_{k-n-1} u_{0}$ is a path from v_{0} to $C_{2 n}$ such that $u_{0} \in V\left(C_{2 n}\right), v_{i} \notin V\left(C_{2 a}\right), i=0,1, \cdots,(k-n-1)$, then $P_{1}=v_{0} v_{1} \cdots v_{k-n-1} u_{0} u_{1} u_{2} \cdots u_{n-1} u_{n}$ and $P_{2}=v_{0} v_{1} \cdots v_{k-n-1} u_{0} u_{2 n-1} \cdots u_{n+1} u_{n}$ are two paths of length k from v_{0} to u_{n}. This contradicts the assumption of G.

Lemma 2.2. For $k \geqslant 12, a P(k)$-graph consists of C^{*} and some bridge-paths of length at most 4 and furthermore, the internal vertices of every bridae-path have degree 2 and two vertices of attachment of every bridge-path are different.

Proof. Let G be a $P(k)$-graph for some $k \geqslant 12$. Since G is connected, then for every vertex $u \notin V\left(C^{*}\right)$ we may choose a longest path P from u to some vertex of C^{*}, say ω_{i} such that $V(P) \cap V\left(C^{*}\right)=\left\{\omega_{i}\right\}$. Since C^{*} has length $2(k-4)$ the length l of P is at most three by Lemma 2.1. Now, we distinguish between three cases depending upon l.

Case 1. $l=3$. Let $P=u u_{2} u_{1} \omega_{i}$ be a path from u to $C^{*}, u, u_{2}, u_{1} \notin V\left(C^{*}\right)$. We prove that $d\left(u_{1}\right)=d\left(u_{2}\right)=d(u)=2$.

By Lemma 2.1 $N(u) \subset V\left(C^{*}\right) \cup V(P)$. If $d(u)>2$, then we have $v_{1}, v_{2} \in N(u), v_{1} \neq u_{2}$, $v_{2} \neq u_{2}$. If $u_{1} \in\left\{v_{1}, v_{2}\right\}$, say $u_{1}=v_{1}$, then $v_{2} \in V\left(C^{*}\right)$, say $v_{2}=\omega_{i}$ and by Lemma 2.1.
$\omega_{j} u u_{2} u_{1} \omega_{i} C^{*} \omega_{j}$ is an odd cycle, hence $\omega_{j} u u_{1} \omega_{i} C^{*} \omega_{j}$ is an even cycle, a contradiction. If $v_{1}, v_{2} \in V\left(C^{*}\right)$, say $v_{1}=\omega_{j}$ and $v_{2}=\omega_{k}$, then $\omega_{j} u u_{2} u_{1} \omega_{i} C^{*} \omega_{j}$ and $\omega_{k} u u_{2} u_{1} \omega_{i} C^{*} \omega_{k}$ are two odd cycles. Consequently $\omega_{j} u \omega_{k} C^{*} \omega_{j}$ is an even cycle, again a contradiction. It follows that $d(u)=2$.

Suppose now $d\left(u_{2}\right)>2$.
Subcase 1.1. $u u_{1} \in B(G)$. In this case we may choose $v \in N\left(u_{2}\right), v \neq u_{1}, v \neq u$. If $v \in V\left(C^{*}\right)$, then $v=\omega_{j}$ for some j and $\omega_{j} u_{2} u_{1} \omega_{i} C^{*} \omega_{j}$ is an odd cycle. Hence $\omega_{j} u_{2} u u_{1} \omega_{i} C^{*} \omega_{j}$ is an even cycle. If $v \notin V\left(C^{*}\right)$, then $v u_{2} u u_{1} \omega_{i}$ is a path of length 4 from v to C^{*}. These are impossible. Therefore, Subcase 1.1 fails.

Subcase 1.2. $u u_{1} \notin E(G)$. Since $d(u)=2$, some vertex ω_{j} of C^{*} is adjacent to u and $\omega_{j} u u_{2} u_{1} \omega_{i} C^{*} \omega_{j}$ is an odd cycle. If $d\left(u_{2}\right)>2$, then we may choose $v \in N\left(u_{2}\right)$ such that $v \neq u, v \neq u_{1}$. If $v \in V\left(C^{*}\right)$. If $v^{\prime}=u_{1}$, then $v=\omega_{k}$ and $\omega_{k} u_{2} u_{1} \omega_{i} C^{*} \omega_{k}$ is an odd cycle. Hence $\omega_{k} u_{2} u \omega_{j} C^{*} \omega_{k}$ is an even cycle. If $v \notin V\left(C^{*}\right)$, then there exists a vertex v^{\prime} such that $v v^{\prime} \in E(G), v^{\prime} \neq u_{2}, v^{\prime} \in V\left(C^{*}\right)$ or $v^{\prime}=u_{1}$. If $v^{\prime}=u_{1}$, then $u u_{2} v u_{1} \omega_{i}$ is a path of length 4 from u to C^{*}. If $v^{\prime} \in V\left(C^{*}\right)$, say $v^{\prime}=\omega_{k}$, then $\omega_{k} v u_{2} u \omega_{j} C^{*} \omega_{k}$ is an even cycle since $\omega_{k} v u_{2} u_{1} \omega_{i} C^{*} \omega_{k}$ and $\omega_{j} u u_{2} u_{1} \omega_{i} C^{*} \omega_{j}$ are odd cycles. These contradictions imply that Subcase 1.2 fails.

Hence we have $d\left(u_{2}\right)=2$.
Since $d(u)=d\left(u_{2}\right)=2$, if $u u_{1} \in E(G)$, then there is no (u, u_{2})-path of length $k(k>2)$. Hence $N(u) \cap V\left(C^{*}\right) \neq \emptyset$. Let $u \omega_{j} \in E(G)$. Thus $u_{1} u_{2} u \omega_{j}$ is a path of length 3 from u_{1} to C^{*} and by the proof for $d(u)=2$, we have $d\left(u_{1}\right)=2$.

If $\omega_{i}=\omega_{j}$ that is, $\omega_{i} u_{1} u_{2} u \omega_{j}=\omega_{i}$ is a cycle, then there is no path of length k from u to ω_{i}. Hence $\omega_{i} \neq \omega_{j}$.

Case 2. $l=2$. Let $u u_{1} \omega_{i}$ be a path from u to C^{*} such that $u, u_{1} \notin V\left(C^{*}\right)$. Since $l=2$, $N(u) \subset V\left(C^{*}\right) \cup\left\{u_{1}\right\}$ (otherwise, we have $u^{\prime} \notin V\left(C^{*}\right) \cup\left\{u_{1}\right\}$, $u^{\prime} u \in E(G)$ then $u^{\prime} u u_{1} \omega_{i}$ is a path from u^{\prime} to C^{*}. By Case 1 we have $d\left(u^{\prime}\right)=d(u)=d\left(u_{1}\right)=2$). If $d(u)>2$, then we have $\omega_{j}, \omega_{k} \in V\left(C^{*}\right)$ such that $u \omega_{j}, u \omega_{k} \in E(G)$ and by Lemma $2.1 \omega_{j} u u_{1} \omega_{i} C^{*} \omega_{j}$ and $\omega_{k} u u_{1} \omega_{i} C^{*} \omega_{k}$ are odd cycles. Thus $\omega_{j} u \omega_{k} C^{*} \omega_{j}$ is an even cycle, a contradiction. Hence we have $d(u)=2$, that is, there is a vertex $\omega_{j} \in V\left(C^{*}\right)$ such that $\omega_{j} u u_{1} \omega_{i} C^{*} \omega_{j}$ is an odd cycle, so $u_{1} u \omega_{j}$ is a path from u_{1} to $C^{*}, u_{1}, u \notin V\left(C^{*}\right)$. We may assume this is a longest path from u_{1} to C^{*} (otherwise by the proof for $l=3$ we have $d\left(u_{1}\right)=2$), and then by using the arguments of the proof for $d(u)=2$ we can easily show that $d\left(u_{1}\right)=2$.

Now $d(u)=d\left(u_{1}\right)=2$, If $u \omega_{i} \notin E(G)$, then there is no $\left(u, \omega_{i}\right)$-path of length k. Hence we have a vertex $\omega_{j} \neq \omega_{i}$ such that $\omega_{j} u \in E(G)$, that is, $P=\omega_{i} u_{1} u \omega_{j}$ is a bridge-path.

Case 3. $l=1$. Let $u \omega_{i} \in E(G)$ and $u \notin V\left(C^{*}\right)$. By the assumption of $l=1$ we know $N(u) \in V\left(C^{*}\right)$.

If $d(u)>2$, then there exist two vertices $\omega_{j}, \omega_{k} \in N(u) \cap V\left(C^{*}\right)$ such that $\omega_{j} u \omega_{i} C^{*} \omega_{j}$ and $\omega_{k} u \omega_{i} C^{*} \omega_{k}$ are odd cycles and therefore $\omega_{k}=u \omega_{j} C^{*} \omega_{k}$ is an even cycle, a contradiction. So $d(u)=2$ and there is $\omega_{j} \in V\left(C^{*}\right)$ such that $\omega_{i} \neq \omega_{j}$ and $\omega_{i} u \omega_{j}$ is a bridge-path. This completes the proof of Lemma 2.2.

Lemma 2.3. If $k \geqslant 12$, then any two bridge-paths in a $P(k)$-graph G are not skew. Hence G is a planar graph.

Proof. Let $\omega_{i_{0}} P_{1} \omega_{i_{1}}$, and $\omega_{j_{0}} P_{2} \omega_{j_{1}}$ denote two skew bridge-paths with lengths l and l^{\prime}, respectively. Then C^{*} can be written as $\omega_{i_{0}} L_{1} \omega_{j_{0}} L_{2} \omega_{i_{1}} L_{3} \omega_{j_{1}} L_{4} \omega_{i_{0}}$. Let l_{i} denote the length of $L_{i}, i=1,2,3,4$, and $l_{i} \geqslant 1$. By Lemma 2.1, $\omega_{i_{0}} P_{1} \omega_{i_{1}} \bar{L}_{2} \omega_{i_{0}} \bar{L}_{1} \omega_{i_{0}}$ and $\omega_{j_{0}} P_{2} \omega_{j_{1}} \bar{L}_{3} \omega_{i_{1}} \bar{L}_{2} \omega_{j_{0}}$ are two odd cycles and hence $\omega_{j_{0}} P_{2} \omega_{j_{1}} L_{4} \omega_{i_{0}} P_{1} \omega_{i_{1}} \bar{L}_{2} \omega_{j_{0}}$ and $\omega_{j_{0}} P_{2} \omega_{j_{1}} \bar{L}_{3} \omega_{i_{1}} \bar{P}_{1} \omega_{i_{0}} L_{1} \omega_{j_{0}}$ are two even cycles. Thus, by Lemma 1.1 we have

$$
l^{\prime}+l_{4}+l+l_{2} \leqslant 2(k-4),
$$

$$
l^{\prime}+l_{3}+l+l_{1} \leqslant 2(k-4)
$$

Since $l_{1}+l_{2}+l_{3}+l_{4}=2(k-4)$ we have

$$
\begin{aligned}
& l^{\prime}+l \leqslant l_{1}+l_{3} \\
& l^{\prime}+l \leqslant l_{2}+l_{4}
\end{aligned}
$$

Now we consider the following three possible cases.
Case 1. $l_{1} \geqslant l_{3}$ and $l_{2} \geqslant l_{4}$.
We consider the closed walk:

$$
W: \omega_{i_{0}} P_{1} \omega_{i_{1}} L_{3} \omega_{j_{1}} \bar{P}_{2} \omega_{j_{0}} L_{2} \omega_{i_{1}} L_{3} \omega_{j_{1}} L_{4} \omega_{i_{0}}
$$

with length $L^{\prime}=l+l^{\prime}+l_{2}+2 l_{3}+l_{4}$ which is an even number. In this case there exists a vertex $\omega_{i} \in V\left(L_{2}\right)-\left\{\omega_{i_{1}}\right\}$ such that there are two different ($\omega_{i_{0}}, \omega_{i}$)-paths of length $\frac{1}{2} L^{\prime}$ from $\omega_{i_{0}}$ to $\omega_{i}: \omega_{i_{0}} P_{1} \omega_{i_{1}} L_{3} \omega_{j_{1}} \bar{P}_{2} \omega_{j_{0}} L_{2} \omega_{i}$ and $\omega_{i_{0}} \bar{L}_{4} \omega_{j_{1}} \bar{L}_{3} \omega_{i_{1}} \bar{L}_{2} \omega_{i}$. If $\frac{1}{2} L^{\prime}+l_{1} \geqslant k+1$, then there exists a vertex $\omega_{j} \in V\left(L_{1}\right)-\left\{\omega_{j_{0}}\right\}$ such that there are two different paths of length k from ω_{j} to ω_{i}. Hence $\frac{1}{2} L^{\prime}+l_{1} \leqslant k$, that is

$$
\frac{1}{2}\left(l^{\prime}+l+l_{3}+l_{1}\right) \leqslant 4 .
$$

Similarly, we consider the closed walk

$$
W^{\prime}: \omega_{i_{1}} \bar{P}_{1} \omega_{i_{0}} \bar{L}_{4} \omega_{j_{1}} \bar{P}_{2} \omega_{j_{0}} \bar{L}_{1} \omega_{i_{0}} \bar{L}_{4} \omega_{j_{1}} \bar{L}_{3} \omega_{i_{1}}
$$

which has length $L^{\prime \prime}=l^{\prime}+2 l_{4}+l+l_{1}+l_{3}$, and we can prrove $\frac{1}{2} L^{\prime \prime}+l_{2} \leqslant k$ that is

$$
\frac{1}{2}\left(l^{\prime}+l+l_{2}+l_{4}\right) \leqslant 4 .
$$

Hence,

$$
\frac{1}{2}\left(l^{\prime}+l+l_{1}+l_{3}\right)+\frac{1}{2}\left(l^{\prime}+l+l_{2}+l_{4}\right) \leqslant 8,
$$

that is,

$$
l+l^{\prime}+(k-4) \leqslant 8
$$

Thus we have $k \leqslant 10$ by $l, l \geqslant 1$. This contradicts the assumption of $k \geqslant 12$.
Case 2. $l_{1}<l_{3}$, and $l_{2} \geqslant l_{4}$.
In this case we consider the closed walks: W^{\prime} and

$$
W^{\prime \prime}: \omega_{j_{1}} \bar{P}_{2} \omega_{j_{n}} \bar{L}_{1} \omega_{i_{0}} P_{1} \omega_{i_{1}} \bar{L}_{2} \omega_{j_{0}} \bar{L}_{1} \omega_{i_{0}} \bar{L}_{4} \omega_{j_{1}}
$$

with length $L^{\prime \prime \prime}=l+l^{\prime}+2 l_{1}+l_{2}+l_{4}$ and we can prove $\frac{1}{2} L^{\prime \prime \prime}+l_{3} \leqslant k$, that is,

$$
\frac{1}{2}\left(l^{\prime}+l+l_{1}+l_{3}\right) \leqslant 4 .
$$

Hence

$$
\frac{1}{2}\left(l^{\prime}+l+l_{1}+l_{3}\right)+\frac{1}{2}\left(l^{\prime}+l+l_{2}+l_{4}\right) \leqslant 8,
$$

that is

$$
l^{\prime}+l+(k-4) \leqslant 8 .
$$

This is impossible.
Case 3. $l_{1}<l_{2}$ and $l_{2}<l_{4}$ or $l_{1} \geqslant l_{3}$ and $l_{2}<l_{4}$.
Similar to Case 1 and Case 2, we can prove that Case 3 is impossible.

Lemma 2.4. If $k \geqslant 12$, then any cycle of a $P(k)$-graph G containing exactly two bridge-paths has length at most 8 .

Proof. Let $\omega_{i_{0}} P_{1} \omega_{i_{1}}$ and $\omega_{j_{0}} P_{2} \omega_{j_{1}}$ be two bridge-paths of G and P_{1}, P_{2} have length l and l^{\prime}, respectively. Then $l, l^{\prime} \leqslant 4$. By Lemma 2.3. P_{1} and P_{2} are not skew, hence four vertices of attachment of P_{1} and P_{2} appear in the cyclic order $\omega_{i_{0}}, \omega_{i_{1}}, \omega_{j_{0}}, \omega_{j_{1}}$ on C^{*}. Set $C^{*}=\omega_{i_{0}} L_{1} \omega_{i_{1}} L_{2} \omega_{j_{0}} L_{3} \omega_{j_{1}} L_{4} \omega_{i_{0}}$. Let l_{i} denote length of $L_{i}, i=1,2,3,4$. The cycle containing exactly two bridge-paths P_{1} and P_{2} is unique: $\omega_{i_{0}} P_{1} \omega_{i_{1}} L_{2} \omega_{j_{0}} P_{2} \omega_{j_{1}} L_{4} \omega_{i_{0}}$. If $\omega_{i_{0}}=\omega_{j_{1}}$ and $\omega_{j_{0}}=\omega_{i_{1}}$, then this cycle has length $l+l^{\prime} \leqslant 8$. Now, by supposing $\omega_{i_{1}} \neq \omega_{j_{0}}, l_{2} \geqslant l_{4}, l_{1} \geqslant l_{3}$, we can see that the closed walk

$$
W: \omega_{i_{1}} \bar{P}_{1} \omega_{i_{0}} \bar{L}_{4} \omega_{j_{1}} \bar{P}_{2} \omega_{j_{0}} L_{3} \omega_{j_{1}} L_{4} \omega_{i_{0}} L_{1} \omega_{i_{1}}
$$

has length $L=l+l^{\prime}+2 l_{4}+l_{1}+l_{3}$ which is an even number.
By assumption there is a vertex $\omega_{i} \in V\left(L_{1}\right)-\left\{\omega_{i_{0}}\right\}$ such that there are two paths from $\omega_{j_{0}}$ to ω_{i} :

$$
\omega_{j_{0}} L_{3} \omega_{j_{1}} L_{4} \omega_{i_{0}} L_{1} \omega_{i} \quad \text { and } \quad \omega_{j_{0}} P_{2} \omega_{j_{1}} L_{4} \omega_{i_{0}} P_{1} \omega_{i_{1}} \widetilde{L}_{1} \omega_{i}
$$

each having length $\frac{1}{2} L$. If $\frac{1}{2} L+l_{2} \geqslant k+1$, then there is $a \omega_{j} \in V\left(L_{2}\right)-\left\{\omega_{i}\right\}$ such that there are two paths of length k from ω_{i} to ω_{j}. Hence $\frac{1}{2} L+l_{2} \leqslant k$, that is,

$$
\frac{1}{2}\left(l_{1}+l_{2}+l_{3}+l_{4}\right)+\frac{1}{2}\left(l_{2}+l_{4}+l+l^{\prime}\right) \leqslant k
$$

and so

$$
l+l_{2}+l^{\prime}+l_{4} \leqslant 8
$$

Lemma 2.5. If $k \geqslant 12$, then any three bridge-paths of a $P(k)$-graph G are not in the same cycle.

Proof. Assume by contradiction that $\omega_{i_{0}} P_{1} \omega_{i_{1}}, \omega_{j_{0}} P_{2} \omega_{j_{1}}$ and $\omega_{k_{0}} P_{3} \omega_{k_{1}}$ are three bridge-paths in the same cycle C, P_{1}, P_{2} and P_{3} have lengths l, l^{\prime} and $l^{\prime \prime}$,
respectively. Then by Lemma 2.4, 6 vertices of attachment of P_{1}, P_{2} and P_{3} appear in the cyclic order $\omega_{i_{0}}, \omega_{i_{1}}, \omega_{j_{0}}, \omega_{j_{1}}, \omega_{k_{0}}, \omega_{k_{1}}$ on C^{*}. Thus we can denote C^{*} by $\omega_{i_{0}} L_{1} \omega_{i_{1}} L_{2} \omega_{j_{0}} L_{3} \omega_{j_{1}} L_{4} \omega_{k_{0}} L_{5} \omega_{k_{1}} L_{6} \omega_{i_{0}}$ and length of L_{i} by $l_{i}, i=1,2, \ldots, 6$. By Lemma 2.4 we have

$$
\begin{align*}
& l+l_{2}+l^{\prime}+l_{4}+l_{5}+l_{6} \leqslant 8 \\
& l+l_{2}+l_{3}+l_{4}+l^{\prime \prime}+l_{6} \leqslant 8 \tag{*}\\
& l_{1}+l_{2}+l^{\prime}+l_{4}+l^{\prime \prime}+l_{6} \leqslant 8
\end{align*}
$$

Hence

$$
\left(l_{2}+l_{2}+l_{3}+l_{4}+l_{5}+l_{6}\right)+2\left(l+l^{\prime \prime}+l^{\prime \prime}+l_{2}+l_{4}+l_{6}\right) \leqslant 24
$$

Since $l_{1}+l_{2}+l_{3}+l_{4}+l_{5}+l_{6}=2(k-4)$ we have $(k-4)+\left(l+l^{\prime \prime}+l_{2}+l_{4}+l_{6}\right) \leqslant 12$. Thus if $k \geqslant 14$, this is impossible.

If $k=13$, then $l+l^{\prime}+l^{\prime \prime}+l_{2}+l_{4}+l_{6} \leqslant 3$. Only the following case is possible $l_{2}=l_{4}=l_{6}=0, l=l^{\prime}=l^{\prime \prime}=1$. In this case by ($*$) we have $l_{1}=l_{3}=1_{5}=6$ and $\omega_{i_{0}}=\omega_{k_{1}}$, $\omega_{j_{0}}=\omega_{i_{1}}, \omega_{j_{1}}=\omega_{k_{0}}$. But $C^{*} \cup P_{1} \cup P_{2} \cup P_{3}$ is not $P(13)$-graph. Hence, there exists a bridge-path different from P_{1}, P_{2} and P_{3}, say $\omega_{i} P \omega_{j}$. Without loss of generality, let $\omega_{i} \notin V\left(L_{1}\right)-\left\{\omega_{i_{0}}\right\}$. If $\omega_{i}=\omega_{i_{1}}$, then ω_{j} is only $\omega_{i_{0}}$ or $\omega_{k_{0}}$ and $P=\omega_{i} \omega_{j}=P_{1}$ by the above proof. This is impossible. If $\omega_{i} \neq \omega_{i_{0}}, \omega_{i_{1}}$ and $\omega_{j} \in V\left(L_{1}\right)$, then P, P_{2} and P_{3} are in the same cycle. Hence $P=P_{1}$. If $\omega_{i} \neq \omega_{i_{0}}, \omega_{i_{1}}$ and $\omega_{j} \notin V\left(L_{1}\right)$, then $\omega_{j} \in V\left(L_{3}\right)$ or $\omega_{j} \in V\left(L_{5}\right)$ thus P and P_{1} are skew, this contradicts Lemma 2.3. It follows that P_{1}, P_{2} and P_{3} are not in the same cycle.

If $k=12$, then $l_{2}+l_{4}+l_{6}+l+l^{\prime}+l^{\prime \prime} \leqslant 4$. We consider the following three cases:
Case 1. $l=l^{\prime}=l^{\prime \prime}=1$ and $l_{2}=l_{4}=l_{6}=0$. By $(*)$ we have $l_{1}, l_{3}, l_{5} \leqslant 6$, similar to $k=13$, we can prove that this case fails.

Case 2. $l=l^{\prime}=l^{\prime \prime}=1, l_{2}=1$ and $l_{4}=l_{6}=0$. By (*) $l_{1} \leqslant 5, l_{3} \leqslant 5, l_{5} \leqslant 6$, since $\omega_{i_{0}} P_{1} \omega_{i_{1}} \bar{L}_{1} \omega_{i_{0}}, \omega_{j_{0}} P_{2} \omega_{j_{1}} \bar{L}_{3} \omega_{j_{0}}$ and $\omega_{k_{0}} P_{3} \omega_{k_{0}} \bar{L}_{5} \omega_{k_{0}}$ are three odd cycles, hence $l_{1} \leqslant 4, l_{3} \leqslant 4, l_{5} \leqslant 6$. By $2(k-4)=l_{1}+l_{2}+l_{3}+l_{4}+l_{5}+l_{6}$ we have: $16=2(k-4)=$ $l_{1}+l_{2}+l_{3}+l_{4}+l_{5}+l_{6}=l_{1}+l_{2}+l_{3}+l_{5} \leqslant 4+1+4+6=15$. Therefore Case 2 is impossible.

Case 3. $l=2, l^{\prime}=l^{\prime \prime}=1$ and $l_{2}=l_{4}=l_{6}=0 . \mathrm{By}(*)$ we have $l_{1} \leqslant 6, l_{3} \leqslant 5, l_{5} \leqslant 5$, similar to Case 2 we have $l_{1} \leqslant 6, l_{3} \leqslant 4, l_{5} \leqslant 4$.

Thus $16=2(k-4)=l_{1}+l_{3}+l_{5} \leqslant 14$ a contradiction.
This completes the proof of Lemma 2.5.

3. Proof of Theorem 1.2

If for some $k \geqslant 12$, there is a $P(k)$-graph G, since C^{*} is not a $P(k)$-graph, then G contains some bridge-paths. Hence by Lemma 2.3 and Lemma 2.5 there exist two bridge-paths, say $\omega_{i_{0}} P_{1} \omega_{i_{1}}$ and $\omega_{j_{0}} P_{2} \omega_{j_{1}}$, such that $C^{*}=\omega_{i_{0}} L_{1} \omega_{i_{1}} L_{2} \omega_{j_{0}} L_{3} \omega_{j_{1}} L_{4} \omega_{i_{0}}$
and for every vertex $\omega \in V\left(L_{1}\right)-\left\{\omega_{i_{0}}, \omega_{i_{1}}\right\}$ or $\omega \in V\left(L_{3}\right)-\left\{\omega_{j_{0}}, \omega_{j_{1}}\right\} d(\omega)=2$. Since G is uniquely edge-decompossable into ($k+1$)-cycles, each of bridge-paths is contained in some ($k+1$)-cycle. By Lemma 2.4 and Lemma 2.5 , the ($k+1$)-cycle containing P_{1} is unique $\omega_{i_{0}} P_{1} \omega_{i_{1}} \bar{L}_{1} \omega_{i_{0}}$ and the $(k+1)$-cycle containing P_{2} is unique $\omega_{j_{0}} P_{2} \omega_{j_{1}} \bar{L}_{2} \omega_{j_{0}}$. Let P_{1}, P_{2} have length l and l^{\prime}, respectively, and let L_{i} have length $l_{i}, i=1,2,3,4$, we have $l_{1}+l=k+1$ and $l_{3}+l^{\prime}=k+1$, hence $l_{1}+l_{3}+l+l^{\prime}=2(k+1)$. But $l_{1}+l_{3} \leqslant l_{1}+l_{2}+l_{3}+l_{4}=2(k-4) \quad$ and $\quad l \leqslant 4, \quad l^{\prime} \leqslant 4 \quad$ we have $l_{1}+l_{3}+l+l^{\prime} \leqslant$ $2(k-4)+8=2 k$ a contradiction. It follows that there is no $P(k)$-graph for $k \geqslant 12$.

Acknowledgement

The author is grateful to an anonymous referee for his comments and help.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North Holland, Amsterdam, 1976).
[2] A. Kotzig, Selected open problems in graph theory, in: J.A. Bondy and U.S.R. Murty, eds., Graph Theory and Related Topics (Academic Press, New York, 1979) 358-367.

