19 research outputs found

    The Vlasov-Poisson-Landau System in Rx3\R^3_x

    Full text link
    For the Landau-Poisson system with Coulomb interaction in Rx3\R^3_x, we prove the global existence, uniqueness, and large time convergence rates to the Maxwellian equilibrium for solutions which start out sufficiently close.Comment: 50 page

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Image Noise Removal Method Based on Improved Nonlocal Mean Algorithm

    No full text
    Aiming at the problem of unclear images acquired in interactive systems, an improved image processing algorithm for nonlocal mean denoising is proposed. This algorithm combines the adaptive median filter algorithm with the traditional nonlocal mean algorithm, first adjusts the image window adaptively, selects the corresponding pixel weight, and then denoises the image, which can have a good filtering effect on the mixed noise. The experimental results show that, compared with the traditional nonlocal mean algorithm, the algorithm proposed in this paper has better results in the visual quality and peak signal-to-noise ratio (PSNR) of complex noise images

    Predictive Modeling of Tensile Strength in Aluminum Alloys via Machine Learning

    No full text
    Aluminum alloys are widely used due to their exceptional properties, but the systematic relationship between their grain size and their tensile strength has not been thoroughly explored in the literature. This study aims to fill this gap by compiling a comprehensive dataset and utilizing machine learning models that consider both the alloy composition and the grain size. A pivotal enhancement to this study was the integration of hardness as a feature variable, providing a more robust predictor of the tensile strength. The refined models demonstrated a marked improvement in predictive performance, with XGBoost exhibiting an R2 value of 0.914. Polynomial regression was also applied to derive a mathematical relationship between the tensile strength, alloy composition, and grain size, contributing to a more profound comprehension of these interdependencies. The improved methodology and analytical techniques, validated by the models’ enhanced accuracy, are not only relevant to aluminum alloys, but also hold promise for application to other material systems, potentially revolutionizing the prediction of material properties
    corecore