96 research outputs found

    Mammalian utilization of floodplain habitats along the North Fork of the Flathead River in Glacier National Park Montana

    Get PDF

    Quantum Logic for Trapped Atoms via Molecular Hyperfine Interactions

    Full text link
    We study the deterministic entanglement of a pair of neutral atoms trapped in an optical lattice by coupling to excited-state molecular hyperfine potentials. Information can be encoded in the ground-state hyperfine levels and processed by bringing atoms together pair-wise to perform quantum logical operations through induced electric dipole-dipole interactions. The possibility of executing both diagonal and exchange type entangling gates is demonstrated for two three-level atoms and a figure of merit is derived for the fidelity of entanglement. The fidelity for executing a CPHASE gate is calculated for two 87Rb atoms, including hyperfine structure and finite atomic localization. The main source of decoherence is spontaneous emission, which can be minimized for interaction times fast compared to the scattering rate and for sufficiently separated atomic wavepackets. Additionally, coherent couplings to states outside the logical basis can be constrained by the state dependent trapping potential.Comment: Submitted to Physical Review

    Assessing simulation ecosystem processes for climate variability research at Glacier National Park

    Get PDF
    Glacier National Park served as a test site for ecosystem analyses that involved a suite of integrated models embedded within a geographic information system. The goal of the exercise was to provide managers with maps that could illustrate probable shifts in vegetation, net primary production (NPP), and hydrologic responses associated with two selected climatic scenarios. The climatic scenarios were (a) a recent 12-yr record of weather data, and (b) a reconstituted set that sequentially introduced in repeated 3-yr intervals wetter–cooler, drier–warmer, and typical conditions. To extrapolate the implications of changes in ecosystem processes and resulting growth and distribution of vegetation and snowpack, the model incorporated geographic data. With underlying digital elevation maps, soil depth and texture, extrapolated climate, and current information on vegetation types and satellite-derived estimates of leaf area indices, simulations were extended to envision how the park might look after 120 yr. The predictions of change included underlying processes affecting the availability of water and nitrogen. Considerable field data were acquired to compare with model predictions under current climatic conditions. In general, the integrated landscape models of ecosystem processes had good agreement with measured NPP, snowpack, and streamflow, but the exercise revealed the difficulty and necessity of averaging point measurements across landscapes to achieve comparable results with modeled values. Under the extremely variable climate scenario significant changes in vegetation composition and growth as well as hydrologic responses were predicted across the park. In particular, a general rise in both the upper and lower limits of treeline was predicted. These shifts would probably occur along with a variety of disturbances (fire, insect, and disease outbreaks) as predictions of physiological stress (water, nutrients, light) altered competitive relations and hydrologic responses. The use of integrated landscape models applied in this exercise should provide managers with insights into the underlying processes important in maintaining community structure, and at the same time, locate where changes on the landscape are most likely to occur

    Red wine and components flavonoids inhibit UGT2B17 in vitro

    Get PDF
    Background The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. The aim of this study is to investigate if red wine, a common dietary substance, has an inhibitory effect on UGT2B17. Methods Testosterone glucuronidation was assayed using human UGT2B17 supersomes with quantification of unglucuronidated testosterone over time using HPLC with DAD detection. The selected red wine was analysed using HPLC and the inhibitory effects of the wine and phenolic components were tested independently in a screening assay. Further analyses were conducted for the strongest inhibitors at physiologically relevant concentrations. Control experiments were conducted to determine the effects of the ethanol on UGT2B17. Results Over the concentration range of 2 to 8% the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HLPC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%), caffeic acid (22%) and gallic acid (9%); using a ratio of phenolic:testosterone of 1:2.5. In contrast p-coumaric acid and chlorogenic acid had no effect on the UGT2B17. The most active phenolic was selected for a detailed study at physiologically relevant concentrations, and quercetin maintained inhibitory activity of 20% at 2 M despite a ten-fold excess of testosterone. Conclusion This study reports that in an in vitro supersome-based assay, the key steroid-metabolising enzyme UGT2B17 is inhibited by a number of phenolic dietary substances and therefore may reduce the rate of testosterone glucuronidation in vivo. These results highlight the potential interactions of a number of common dietary compounds on testosterone metabolism. Considering the variety of foodstuffs that contain flavonoids, it is feasible that diet can elevate levels of circulating testosterone through reduction in urinary excretion. These results warrant further investigation and extension to a human trial to delineate the healt

    The NANOGrav 15-year Data Set: Search for Anisotropy in the Gravitational-Wave Background

    Full text link
    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has reported evidence for the presence of an isotropic nanohertz gravitational wave background (GWB) in its 15 yr dataset. However, if the GWB is produced by a population of inspiraling supermassive black hole binary (SMBHB) systems, then the background is predicted to be anisotropic, depending on the distribution of these systems in the local Universe and the statistical properties of the SMBHB population. In this work, we search for anisotropy in the GWB using multiple methods and bases to describe the distribution of the GWB power on the sky. We do not find significant evidence of anisotropy, and place a Bayesian 95%95\% upper limit on the level of broadband anisotropy such that (Cl>0/Cl=0)<20%(C_{l>0} / C_{l=0}) < 20\%. We also derive conservative estimates on the anisotropy expected from a random distribution of SMBHB systems using astrophysical simulations conditioned on the isotropic GWB inferred in the 15-yr dataset, and show that this dataset has sufficient sensitivity to probe a large fraction of the predicted level of anisotropy. We end by highlighting the opportunities and challenges in searching for anisotropy in pulsar timing array data.Comment: 19 pages, 11 figures; submitted to Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    The NANOGrav 15-Year Data Set: Detector Characterization and Noise Budget

    Get PDF
    Pulsar timing arrays (PTAs) are galactic-scale gravitational wave detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency gravitational wave (GW) signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15-year data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white noise parameters and two red noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise-ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7×10−157\times 10^{-15} at 5 nHz. A power law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav's 15-year GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.Comment: 67 pages, 73 figures, 3 tables; published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    The NANOGrav 15 yr Data Set: Search for Transverse Polarization Modes in the Gravitational-wave Background

    Get PDF
    Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2 when comparing HD to ST correlations, and ∼1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis

    How to Detect an Astrophysical Nanohertz Gravitational-Wave Background

    Get PDF
    Analysis of pulsar timing data have provided evidence for a stochastic gravitational wave background in the nHz frequency band. The most plausible source of such a background is the superposition of signals from millions of supermassive black hole binaries. The standard statistical techniques used to search for such a background and assess its significance make several simplifying assumptions, namely: i) Gaussianity; ii) isotropy; and most often iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis techniques on a large collection of realistic simulated datasets. The dataset length, observing schedule, and noise levels were chosen to emulate the NANOGrav 15-year dataset. Simulated signals from millions of binaries drawn from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that the standard statistical methods perform remarkably well on these simulated datasets, despite their fundamental assumptions not being strictly met. They are able to achieve a confident detection of the background. However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large variance in the significance and recovered parameters of the background. We also find that the presence of loud individual binaries can bias the spectral recovery of the background if we do not account for them.Comment: 14 pages, 8 figure

    The NANOGrav 15-year data set: Search for Transverse Polarization Modes in the Gravitational-Wave Background

    Full text link
    Recently we found compelling evidence for a gravitational wave background with Hellings and Downs (HD) correlations in our 15-year data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes which produce different interpulsar correlations. In this work we search the NANOGrav 15-year data set for evidence of a gravitational wave background with quadrupolar Hellings and Downs (HD) and Scalar Transverse (ST) correlations. We find that HD correlations are the best fit to the data, and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2\sim 2 when comparing HD to ST correlations, and ∼1\sim 1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise-ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise-ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise-ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis.Comment: 11 pages, 5 figure
    • …
    corecore