14 research outputs found

    Target of Rapamycin (TOR) Negatively Regulates Ethylene Signals in Arabidopsis

    No full text
    Target of rapamycin (TOR) acts as a master regulator in coordination of cell growth with energy and nutrient availability. Despite the increased appreciation of the essential role of the TOR complex in interaction with phytohormone signaling, little is known about its function on ethylene signaling. Here, through expression analysis, genetic and biochemical approaches, we reveal that TOR functions in the regulation of ethylene signals. Transcriptional analysis indicates that TOR inhibition by AZD8055 upregulated senescence- and ethylene-related genes expression. Furthermore, ethylene insensitive mutants like etr1-1, ein2-5 and ein3 eil1, showed more hyposensitivity to AZD8055 than that of WT in hypocotyl growth inhibition. Similarly, blocking ethylene signals by ethylene action inhibitor Ag+ or biosynthesis inhibitor aminoethoxyvinylglycine (AVG) largely rescued hypocotyl growth even in presence of AZD8055. In addition, we also demonstrated that Type 2A phosphatase-associated protein of 46 kDa (TAP46), a downstream component of TOR signaling, physically interacts with 1-aminocy-clopropane-1-carboxylate (ACC) synthase ACS2 and ACS6. Arabidopsis overexpressing ACS2 or ACS6 showed more hypersensitivity to AZD8055 than WT in hypocotyl growth inhibition. Moreover, ACS2/ACS6 protein was accumulated under TOR suppression, implying TOR modulates ACC synthase protein levels. Taken together, our results indicate that TOR participates in negatively modulating ethylene signals and the molecular mechanism is likely involved in the regulation of ethylene biosynthesis by affecting ACSs in transcription and protein levels

    Bioinspired Design of Alcohol Dehydrogenase@nano TiO2 Microreactors for Sustainable Cycling of NAD+/NADH Coenzyme

    No full text
    The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH) was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO2 nanoparticles (NPs) as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO2 NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD) coenzyme between NADH and NAD+ was realized by enzymatic regeneration of NADH from NAD+ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD+ under visible light. This bioinspired ADH@TiO2 NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD+/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation

    Thermal Dynamic Exploration of Full-Ceramic Ball Bearings under the Self-Lubrication Condition

    No full text
    A silicon nitride ceramic bearing has good self-lubricating characteristics. It still has a good operational status under the condition of a lack of oil. However, the temperature distribution of a silicon nitride ceramic bearing during its operation is unclear. To clarify the thermal distribution of a full-ceramic ball silicon nitride ceramic bearing under self-lubricating conditions, the changing trend of the rolling friction temperature between the rolling elements and channels with different accuracies is analyzed using the friction testing machine. The bearing heat generation model based on the silicon nitride material coefficient is established, and the life test machine measures the temperature of the bearing to verify the accuracy of the simulation model. The results show that the friction temperature between the ceramic ball and channel decreases with the increase in ceramic ball level. With an increase in the ceramic ball pressure and temperature, the friction temperature rises. Under self-lubrication, when the bearing bears a heavy load, the influence of the rotating speed on temperature rise tends to decrease. Under the condition of high speed, with the increase in load, the change range of temperature rise shows an upward trend. The important relationship between the bearing’s heat and bearing’s load and speed is revealed. It provides some theoretical guidance for the thermal analysis of a silicon nitride ceramic ball bearing under the self-lubricating condition to improve the service life and reliability of full-ceramic ball bearings

    The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato

    No full text
    In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis. The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 (ScFKBP12) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3, and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1. Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato

    Facial strategy for radical species through Ag(I)-mediated oxidation of the alkyl trifluoroborates

    No full text
    <p>A rapid and highly efficient method for the radical formation using potassium alkylfluoroborates as radical precursor is devised and developed which conducts under relatively mild condition using silver(I) oxide as the oxidant. The observed silver mirror phenomenon hints at the fact that Ag<sub>2</sub>O is the real oxidant. This approach effectively overcomes the drawbacks-stringent reaction conditions and poor tolerance of a variety of functional groups.</p

    Comparison of thermal ablation and routine surgery for the treatment of papillary thyroid microcarcinoma: a systematic review and Meta-analysis

    No full text
    Background Thermal ablation (TA), as an alternative to surgery, has shown some benefits in the treatment of papillary thyroid microcarcinoma (PTMC) patients, especially for those who are at high risk for surgery or refuse surgery. We performed a systematic review and meta-analysis to evaluate the efficiency, safety, and economy of TA, compared with those of routine surgery (RS), for the treatment of PTMC. Methods PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, and VIP databases were retrieved from inception to 10 January 2020 to identify relevant original studies on comparison of TA and RS for treatment of PTMC. The recurrence rate, recurrence-free survival (RFS), complication rate, operation time, postoperative length of stay, and cost during the perioperative period were extracted as main indices. The pooled standardized mean difference (SMD) or odds ratio (OR) with 95% confidence intervals (CI) were calculated and analyzed. Chi-square test and I2 statistic were applied to determine the heterogeneity among studies. The sensitivity analysis was applied to explore the origin of heterogeneity, and the publication bias was evaluated by Egger’s test. Results Seven retrospective studies with a total of 867 patients met the eligibility criteria and were included in the final meta-analysis. Our study demonstrated that TA showed significant reduction in complication with a pooled OR 0.24 (95% CI 0.13 to 0.43), postoperative length of stay with a pooled SMD −3.14 (95% CI −4.77 to −1.51) and cost during the perioperative period with a pooled SMD of −1.69 (95% CI −3.18 to −0.20). It also demonstrated that both TA and RS had similar pooled proportion of recurrence of OR 0.93 (95% CI 0.38 to 2.30) and recurrence-free survive (RFS). The sensitivity analysis showed that each included study had no significant effect on the results and the results were stable and reliable. The Egger’s test demonstrated publication bias was acceptable. Conclusions TA may not be oncologically inferior to RS, and it is a relatively safe and economical alternative for the treatment of PTMC
    corecore