3 research outputs found

    Facial strategy for radical species through Ag(I)-mediated oxidation of the alkyl trifluoroborates

    No full text
    <p>A rapid and highly efficient method for the radical formation using potassium alkylfluoroborates as radical precursor is devised and developed which conducts under relatively mild condition using silver(I) oxide as the oxidant. The observed silver mirror phenomenon hints at the fact that Ag<sub>2</sub>O is the real oxidant. This approach effectively overcomes the drawbacks-stringent reaction conditions and poor tolerance of a variety of functional groups.</p

    Photoresponsive iodine-bonded liquid crystals based on azopyridine derivatives with a low phase-transition temperature

    No full text
    <p>Halogen bonding interactions in the formation of liquid crystalline phases have been recognised in recent years. Here, we report a novel series of iodine-bonded liquid crystals using 1,2-diiodotetrafluorobenzene (1,2-DITFB) and azopyridine derivatives (AnAzPy), showing a smectic A phase and concurrent photoresponsive behaviour. These were characterised by using a polarising optical microscope, differential scanning calorimetry and UV-vis absorption spectroscopy. The formation of iodine bonding in the complexes was confirmed by X-ray photoelectron spectroscopy and Raman spectroscopy. Importantly, these iodine-bonded complexes demonstrated a low liquid crystal temperature range (30–50°C) among those reported for photoresponsive halogen-bonded liquid crystals. The molar ratio of the iodine-bonded donor and acceptor was 1:1 upon the self-assembly of the supramolecular complex molecule, as indicated by 1D-WAXD experiments of mixed samples of 1,2-DITFB and AnAzPy with different molar ratios. This study offers a new family of photoresponsive halogen-bonded liquid crystals and broadens the potential applications in their associated systems.</p

    Image_2_CARK3-mediated ADF4 regulates hypocotyl elongation and soil drought stress in Arabidopsis.jpeg

    No full text
    Actin depolymerization factors (ADFs), as actin-binding proteins, act a crucial role in plant development and growth, as well as in response to abiotic and biotic stresses. Here, we found that CARK3 plays a role in regulating hypocotyl development and links a cross-talk between actin filament and drought stress through interaction with ADF4. By using bimolecular fluorescence complementation (BiFC) and GST pull-down, we confirmed that CARK3 interacts with ADF4 in vivo and in vitro. Next, we generated and characterized double mutant adf4cark3-4 and OE-ADF4:cark3-4. The hypocotyl elongation assay indicated that the cark3-4 mutant seedlings were slightly longer hypocotyls when compared with the wild type plants (WT), while CARK3 overexpressing seedlings had no difference with WT. In addition, overexpression of ADF4 significantly inhibited long hypocotyls of cark3-4 mutants. Surprisingly, we found that overexpression of ADF4 markedly enhance drought resistance in soil when compared with WT. On the other hand, drought tolerance analysis showed that overexpression of CARK3 could rescue adf4 drought susceptibility. Taken together, our results suggest that CARK3 acts as a regulator in hypocotyl elongation and drought tolerance likely via regulating ADF4 phosphorylation.</p
    corecore