15 research outputs found

    Prediction of Lost Circulation in Southwest Chinese Oil Fields Applying Improved WOA-BiLSTM

    No full text
    Drilling hazards can be significantly decreased by anticipating potential mud loss and then putting the right well control measures in place. Therefore, it is critical to provide early estimates of mud loss. To solve this problem, an enhanced WOA (Whale Optimization Algorithm) and a BiLSTM (Bidirectional Long Short Term Memory) optimization based prediction model of lost circulation prior to drilling has been created. In order to minimize the noise in the historical comprehensive logging data, a wavelet filtering technique was first used. Then, according to the nonlinear Spearman rank correlation coefficient between mud loss and logging parameter values from large to small, seven characteristic parameters were preferred, and the sliding window was used to extract the relevant data. Secondly, the number of neurons in the first and second hidden layers, the maximum training time, and the initial learning rate of the BiLSTM model were optimized using the enhanced WOA method. The BiLSTM network was given the acquired superparameters in order to improve the model’s ability to predict occurrences. Finally, the model was trained and tested using the processed data. In comparison to the LSTM model, BiLSTM model, and WOA-BiLSTM model, respectively, the improved WOA-BiLSTM early mud loss prediction in southwest Chinese oil fields suggested in this study beat the others, receiving 22.3%, 18.7%, and 4.9% higher prediction accuracy, respectively

    Safety and Protection Measures of Underground Non-Coal Mines with Mining Depth over 800 m: A Case Study in Shandong, China

    No full text
    With the increase in mining depth, the risk of ground pressure disasters in yellow gold mines is becoming more and more serious. This paper carries out a borehole test for the pressure behavior in a non-coal mining area with a mining depth of more than 800 m in the Jiaodong area. The test results show that under a depth of 1050 m, the increase in the vertical principal stress is the same as the increase in the minimum horizontal principal stress, which is about 3 MPa per 100 m. When the depth increases to 1350 m, the vertical principal stress increases by about 3% per 100 m, and the self-weight stress and the maximum horizontal principal stress maintain a steady growth rate of about 3 MPa per 100 m. In addition, based on the test results, the operation of the ground pressure monitoring system in each mine is investigated. The investigation results show that in some of the roadway and stope mines with depths of more than 800 m, varying degrees of rock mass instability have occurred, and a few mines have had sporadic slight rockbursts, accounting for about 5%. There was a stress concentration area in the lower part of the goaf formed in the early stage of mining, and slight rockburst phenomena such as rock mass ejection have occurred; meanwhile, the area stability for normal production and construction was good, and there was no obvious ground pressure. This paper compares the researched mines horizontally as well as to international high-level mines and puts forward some suggestions, including: carrying out ground pressure investigations and improving the level of intelligence, which would provide countermeasures to balance the safety risks of deep mining, reducing all kinds of safety production accidents and providing a solid basis for risk prevention and supervision

    Mold-free self-assembled scalable microlens arrays with ultrasmooth surface and record-high resolution

    No full text
    Microlens arrays (MLAs) based on the selective wetting have opened new avenues for developing compact and miniaturized imaging and display techniques with ultrahigh resolution beyond the traditional bulky and volumetric optics. However, the selective wetting lenses explored so far have been constrained by the lack of precisely defined pattern for highly controllable wettability contrast, thus limiting the available droplet curvature and numerical aperture, which is a major challenge towards the practical high-performance MLAs. Here we report a mold-free and self-assembly approach of mass-production of scalable MLAs, which can also have ultrasmooth surface, ultrahigh resolution, and the large tuning range of the curvatures. The selective surface modification based on tunable oxygen plasma can facilitate the precise pattern with adjusted chemical contrast, thus creating large-scale microdroplets array with controlled curvature. The numerical aperture of the MLAs can be up to 0.26 and precisely tuned by adjusting the modification intensity or the droplet dose. The fabricated MLAs have high-quality surface with subnanometer roughness and allow for record-high resolution imaging up to equivalently 10,328 ppi, as we demonstrated. This study shows a cost-effective roadmap for mass-production of high-performance MLAs, which may find applications in the rapid proliferating integral imaging industry and high-resolution display.Published versionWe appreciate the financial support from National Key R&D Program of China (2021YFB3600602, zcgx2022002L), National Natural Science Foundation of China (52175403 and 61805087), Natural Science Foundation of Guangdong Province (2021A1515010623), Special Program on Key Fields for Colleges and Universities of Guangdong Province (2021ZDZX1048), Science and Technology Program of Guangzhou (202102020604), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (2017B030301007), MOE International Laboratory for Optical Information Technologies, and the 111 Project. G.H acknowledges the NTU Start-up Grant

    Numerical Simulation Research and Application of Support Design of Broken Rock Mass in Submarine Gold Mine

    No full text
    In order to solve the problem that the broken rock mass is easy to collapse and fall during the excavation of a submarine gold mine, two kinds of bolt-mesh-concreting combined support schemes are designed by means of field engineering geological investigation, indoor rock mechanics test, rock mass quality classification, and theoretical analysis. We use the numerical simulation for verification and carry out the field industrial test. The results show that the stability grade of broken surrounding rock is III–IV; both schemes can effectively control the deformation and failure of surrounding rock. Compared with the unsupported scheme, the maximum roof displacement in the scheme using roadway roof and sidewall support is reduced by 26.9%, the maximum thickness of the roof plastic zone is reduced by 58.2%, and the volume of the surrounding rock plastic zone is reduced by 26.32%. The bolt-mesh-shotcrete support has good control effect on the loose deformation of surrounding rock, which can effectively prevent the roof collapse and sidewall spalling of roadway. The field industrial test of support scheme meets the stability control requirements of broken rock mass in mines, and the application effect is obvious. The research results presented in this study provide valuable technical guidance and essential insights for the design of support systems in other similar mining projects, contributing to the effective control and stability of broken rock masses during excavation

    Structural Characterization and Anti-Nonalcoholic Fatty Liver Effect of High-Sulfated <i>Ulva pertusa</i> Polysaccharide

    No full text
    The high-sulfated derivative of Ulva pertusa polysaccharide (HU), with unclear structure, has better anti-hyperlipidmia activity than U pertusa polysaccharide ulvan (U). In this study, we explore the main structure of HU and its therapeutic effect against nonalcoholic fatty liver disease (NAFLD). The main structure of HU was elucidated using FT-IR and NMR (13C, 1H, COSY, HSQC, HMBC). The anti-NAFLD activity of HU was explored using the high-fat diet mouse model to detect indicators of blood lipid and liver function and observe the pathologic changes in epididymal fat and the liver. Results showed that HU had these main structural fragments: →4)-β-D-Glcp(1→4)-α-L-Rhap2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp(1→; →4)-α-L-IdopA3S(1→4)-α-L-Rhap3S(1→; →4)-β-D-GlcpA(1→3)-α-L-Rhap(1→; →4)-α-L-IdopA3S(1→4)-β-D-Glcp3Me(1→; →4)-β-D-Xylp2,3S(1→4)-α-L-IdopA3S(1→; and →4)-β-D-Xylp(1→4)-α-L-IdopA3S(1→. Treatment results indicated that HU markedly decreased levels of TC, LDL-C, TG, and AST. Furthermore, lipid droplets in the liver were reduced, and the abnormal enlargement of epididymal fat cells was suppressed. Thus, HU appears to have a protective effect on the development of NAFLD

    Table1_The mechanism of lncRNAs in the crosstalk between epithelial-mesenchymal transition and tumor microenvironment for early colon adenocarcinoma based on molecular subtyping.xlsx

    No full text
    A large number of colon adenocarcinoma (COAD) patients are already advanced when diagnosed. In this study, we aimed to further understand the mechanism of tumor development in early COAD by focusing on epithelial-mesenchymal transition (EMT) and long non-coding RNAs (lncRNAs). Expression profiles of early COAD patients were obtained from public databases. EMT-related lncRNAs were used as a basis for constructing molecular subtypes through unsupervised consensus clustering. Genomic features, pathways and tumor microenvironment (TME) were compared between two subtypes. LncATLAS database was applied to analyze the relation between lncRNAs and transcription factors (TFs). First order partial correlation analysis was conducted to identify key EMT-related lncRNAs.C1 and C2 subtypes with distinct prognosis were constructed. Oncogenic pathways such as EMT, KRAS signaling, JAK-STAT signaling, and TGF-β signaling were significantly enriched in C2 subtype. Higher immune infiltration and expression of immune checkpoints were also observed in C2 subtype, suggesting the key EMT-related lncRNAs may play a critical role in the modulation of TME. In addition, JAK-STAT signaling pathway was obviously enriched in upregulated TFs in C2 subtype, which indicated a link between key lncRNAs and JAK-STAT signaling that may regulate TME. The study further expanded the research on the role of EMT-related lncRNAs in the early COAD. The six identified EMT-related lncRNAs could serve as biomarkers for early screening COAD.</p

    Table2_The mechanism of lncRNAs in the crosstalk between epithelial-mesenchymal transition and tumor microenvironment for early colon adenocarcinoma based on molecular subtyping.xlsx

    No full text
    A large number of colon adenocarcinoma (COAD) patients are already advanced when diagnosed. In this study, we aimed to further understand the mechanism of tumor development in early COAD by focusing on epithelial-mesenchymal transition (EMT) and long non-coding RNAs (lncRNAs). Expression profiles of early COAD patients were obtained from public databases. EMT-related lncRNAs were used as a basis for constructing molecular subtypes through unsupervised consensus clustering. Genomic features, pathways and tumor microenvironment (TME) were compared between two subtypes. LncATLAS database was applied to analyze the relation between lncRNAs and transcription factors (TFs). First order partial correlation analysis was conducted to identify key EMT-related lncRNAs.C1 and C2 subtypes with distinct prognosis were constructed. Oncogenic pathways such as EMT, KRAS signaling, JAK-STAT signaling, and TGF-β signaling were significantly enriched in C2 subtype. Higher immune infiltration and expression of immune checkpoints were also observed in C2 subtype, suggesting the key EMT-related lncRNAs may play a critical role in the modulation of TME. In addition, JAK-STAT signaling pathway was obviously enriched in upregulated TFs in C2 subtype, which indicated a link between key lncRNAs and JAK-STAT signaling that may regulate TME. The study further expanded the research on the role of EMT-related lncRNAs in the early COAD. The six identified EMT-related lncRNAs could serve as biomarkers for early screening COAD.</p
    corecore