2 research outputs found

    Image_1_Survival prediction of hepatocellular carcinoma by measuring the extracellular volume fraction with single-phase contrast-enhanced dual-energy CT imaging.pdf

    No full text
    PurposeThis study aimed to investigate the value of quantified extracellular volume fraction (fECV) derived from dual-energy CT (DECT) for predicting the survival outcomes of patients with hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE).Materials and methodsA total of 63 patients with HCC who underwent DECT before treatment were retrospectively included. Virtual monochromatic images (VMI) (70 keV) and iodine density images (IDI) during the equilibrium phase (EP) were generated. The tumor VMI-fECV and IDI-fECV were measured and calculated on the whole tumor (Whole) and maximum enhancement of the tumor (Maximum), respectively. Univariate and multivariate Cox models were used to evaluate the effects of clinical and imaging predictors on overall survival (OS) and progression-free survival (PFS).ResultsThe correlation between tumor VMI-fECV and IDI-fECV was strong (both pConclusionThe quantified fECV determined by the equilibrium-phase contrast-enhanced DECT can potentially predict the survival outcomes of patients with HCC following TACE treatment.</p

    DataSheet_1_Toward the development of smart capabilities for understanding seafloor stretching morphology and biogeographic patterns via DenseNet from high-resolution multibeam bathymetric surveys for underwater vehicles.docx

    No full text
    The increasing use of underwater vehicles facilitates deep-sea exploration at a wide range of depths and spatial scales. In this paper, we make an initial attempt to develop online computing strategies to identify seafloor categories and predict biogeographic patterns with a deep learning-based architecture, DenseNet, integrated with joint morphological cues, with the expectation of potentially developing its embedded smart capacities. We utilized high-resolution multibeam bathymetric measurements derived from MBES and denoted a collection of joint morphological cues to help with semantic mapping and localization. We systematically strengthened dominant feature propagation and promoted feature reuse via DenseNet by applying the channel attention module and spatial pyramid pooling. From our experiment results, the seafloor classification accuracy reached up to 89.87%, 82.01%, and 73.52% on average in terms of PA, MPA, and MIoU metrics, achieving comparable performances with the state-of-the-art deep learning frameworks. We made a preliminary study on potential biogeographic distribution statistics, which allowed us to delicately distinguish the functionality of probable submarine benthic habitats. This study demonstrates the premise of using underwater vehicles through unbiased means or pre-programmed path planning to quantify and estimate seafloor categories and the exhibited fine-scale biogeographic patterns.</p
    corecore