7 research outputs found

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Spread of an emerging Mycobacterium tuberculosis drug-resistant strain in the Western Cape of South Africa

    No full text
    BACKGROUND: South Africa has a high burden of drug-resistant tuberculosis (TB). METHODS: Routine drug susceptibility testing was performed prospectively over a 2-year period on Mycobacterium tuberculosis isolates in two health districts of the Western Province, South Africa. A cluster of drug-resistant strains that shared a rare mutation in katG315 was found in 64 of the 450 cases identified as having been infected with drug-resistant TB. Isolates belonging to this cluster were phenotypically and genotypically characterised. Epidemiological and clinical characteristics were used to identify mechanisms leading to the acquisition and spread of this drug-resistant strain. RESULTS: An outbreak of an emerging non-Beijing drug-resistant strain infecting 64 pulmonary tuberculosis (PTB) cases was identified. This previously undetected genotype (now designated DRF150) is characterised by five IS6110 insertions, specific spoligotypes and high levels of resistance to the first-line TB medications isoniazid, streptomycin and rifampicin. In 45% of the cases it is also resistant to ethambutol and pyrazinamide. Key factors leading to the development and spread of this drug-resistant genotype were inappropriate chemotherapy, poor adherence to treatment and prolonged periods of infectiousness due to delays in susceptibility testing. CONCLUSIONS: Molecular markers allowed early identification of an emerging non-Beijing drug-resistant strain. © 2007 The Union.Articl

    2 Inorganic Molecules. Part 4

    No full text
    corecore