5 research outputs found

    Characterization of SR3 reveals abundance of non-LTR retrotransposons of the RTE clade in the genome of the human blood fluke, Schistosoma mansoni

    Get PDF
    BACKGROUND: It is becoming apparent that perhaps as much as half of the genome of the human blood fluke Schistosoma mansoni is constituted of mobile genetic element-related sequences. Non-long terminal repeat (LTR) retrotransposons, related to the LINE elements of mammals, comprise much of this repetitive component of the schistosome genome. Of more than 12 recognized clades of non-LTR retrotransposons, only members of the CR1, RTE, and R2 clades have been reported from the schistosome genome. RESULTS: Inspection of the nucleotide sequence of bacterial artificial chromosome number 49_J_14 from chromosome 1 of the genome of Schistosoma mansoni (GenBank AC093105) revealed the likely presence of several RTE-like retrotransposons. Among these, a new non-LTR retrotransposon designated SR3 was identified and is characterized here. Analysis of gene structure and phylogenetic analysis of both the reverse transcriptase and endonuclease domains of the mobile element indicated that SR3 represented a new family of RTE-like non-LTR retrotransposons. Remarkably, two full-length copies of SR3-like elements were present in BAC 49-J-14, and one of 3,211 bp in length appeared to be intact, indicating SR3 to be an active non-LTR retrotransposon. Both were flanked by target site duplications of 10–12 bp. Southern hybridization and bioinformatics analyses indicated the presence of numerous copies (probably >1,000) of SR3 interspersed throughout the genome of S. mansoni. Bioinformatics analyses also revealed SR3 to be transcribed in both larval and adult developmental stages of S. mansoni and to be also present in the genomes of the other major schistosome parasites of humans, Schistosoma haematobium and S. japonicum. CONCLUSION: Numerous copies of SR3, a novel non-LTR retrotransposon of the RTE clade are present in the genome of S. mansoni. Non-LTR retrotransposons of the RTE clade including SR3 appear to have been remarkably successful in colonizing, and proliferation within the schistosome genome

    Characterization of <it>SR3 </it>reveals abundance of non-LTR retrotransposons of the RTE clade in the genome of the human blood fluke, <it>Schistosoma mansoni</it>

    No full text
    Abstract Background It is becoming apparent that perhaps as much as half of the genome of the human blood fluke Schistosoma mansoni is constituted of mobile genetic element-related sequences. Non-long terminal repeat (LTR) retrotransposons, related to the LINE elements of mammals, comprise much of this repetitive component of the schistosome genome. Of more than 12 recognized clades of non-LTR retrotransposons, only members of the CR1, RTE, and R2 clades have been reported from the schistosome genome. Results Inspection of the nucleotide sequence of bacterial artificial chromosome number 49_J_14 from chromosome 1 of the genome of Schistosoma mansoni (GenBank AC093105) revealed the likely presence of several RTE-like retrotransposons. Among these, a new non-LTR retrotransposon designated SR3 was identified and is characterized here. Analysis of gene structure and phylogenetic analysis of both the reverse transcriptase and endonuclease domains of the mobile element indicated that SR3 represented a new family of RTE-like non-LTR retrotransposons. Remarkably, two full-length copies of SR3-like elements were present in BAC 49-J-14, and one of 3,211 bp in length appeared to be intact, indicating SR3 to be an active non-LTR retrotransposon. Both were flanked by target site duplications of 10–12 bp. Southern hybridization and bioinformatics analyses indicated the presence of numerous copies (probably >1,000) of SR3 interspersed throughout the genome of S. mansoni. Bioinformatics analyses also revealed SR3 to be transcribed in both larval and adult developmental stages of S. mansoni and to be also present in the genomes of the other major schistosome parasites of humans, Schistosoma haematobium and S. japonicum. Conclusion Numerous copies of SR3, a novel non-LTR retrotransposon of the RTE clade are present in the genome of S. mansoni. Non-LTR retrotransposons of the RTE clade including SR3 appear to have been remarkably successful in colonizing, and proliferation within the schistosome genome.</p

    The bandit, a New DNA Transposon from a Hookworm— Possible Horizontal Genetic Transfer between Host and Parasite

    Get PDF
    Background: An enhanced understanding of the hookworm genome and its resident mobile genetic elements should facilitate understanding of the genome evolution, genome organization, possibly host-parasite co-evolution and horizontal gene transfer, and from a practical perspective, development of transposon-based transgenesis for hookworms and other parasitic nematodes. Methodology/Principal Findings: A novel mariner-like element (MLE) was characterized from the genome of the dog hookworm, Ancylostoma caninum, and termed bandit. The consensus sequence of the bandit transposon was 1,285 base pairs (bp) in length. The new transposon was flanked by perfect terminal inverted repeats of 32 nucleotides in length with a common target site duplication TA, and it encoded an open reading frame (ORF) of 342 deduced amino acid residues. Phylogenetic comparisons confirmed that the ORF encoded a mariner-like transposase, which included conserved catalytic domains, and that the bandit transposon belonged to the cecropia subfamily of MLEs. The phylogenetic analysis also indicated that the Hsmar1 transposon from humans was the closest known relative of bandit, and that bandit and Hsmar1 constituted a clade discrete from the Tc1 subfamily of MLEs from the nematode Caenorhabditis elegans. Moreover, homology models based on the crystal structure of Mos1 from Drosophila mauritiana revealed closer identity in active site residues of the catalytic domain including Ser281, Lys289 and Asp293 between bandit and Hsmar1 than between Mos1 and either bandit or Hsmar1. The entire bandit ORF was amplified from genomic DNA and a fragment of the bandit ORF was amplified from RNA, indicating that this transposon is actively transcribed in hookworms. Conclusions/Significance: A mariner-like transposon termed bandit has colonized the genome of the hookworm A. caninum. Although MLEs exhibit a broad host range, and are identified in other nematodes, the closest phylogenetic relative of bandit is the Hsmar1 element of humans. This surprising finding suggests that bandit was transferred horizontally between hookworm parasites and their mammalian hosts
    corecore