14 research outputs found

    Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mosquito vectors of <it>Plasmodium </it>spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife.</p> <p>Methods</p> <p><it>Plasmodium </it>DNA from wild-caught <it>Coquillettidia </it>spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female <it>Coquillettidia aurites </it>were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites.</p> <p>Results</p> <p>In total, 33% (85/256) of mosquito pools tested positive for avian <it>Plasmodium </it>spp., harbouring at least eight distinct parasite lineages. Sporozoites of <it>Plasmodium </it>spp. were recorded in salivary glands of <it>C. aurites </it>supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest <it>C. aurites</it>, <it>Coquillettidia pseudoconopas </it>and <it>Coquillettidia metallica </it>as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families.</p> <p>Conclusion</p> <p>Identifying the major vectors of avian <it>Plasmodium </it>spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes.</p

    Spillover of pH1N1 to swine in Cameroon: an investigation of risk factors.

    Get PDF
    BackgroundThe 2009 pH1N1 influenza pandemic resulted in at least 18,500 deaths worldwide. While pH1N1 is now considered to be in a post-pandemic stage in humans it has nevertheless spilled back into swine in at least 20 countries. Understanding the factors that increase the risk of spillover events between swine and humans is essential to predicting and preventing future outbreaks. We assessed risk factors that may have led to spillover of pH1N1 from humans to swine in Cameroon, Central Africa. We sampled swine, domestic poultry and wild birds for influenza A virus at twelve sites in Cameroon from December 2009 while the pandemic was ongoing, to August 2012. At the same time we conducted point-count surveys to assess the abundance of domestic livestock and wild birds and assess interspecific contact rates. Random forest models were used to assess which variables were the best predictors of influenza in swine.ResultsWe found swine with either active pH1N1 infections or positive for influenza A at four of our 12 sites. Only one swine tested positive by competitive ELISA in 2011-2012. To date we have found pH1N1 only in the North and Extreme North regions of Cameroon (regions in Cameroon are administrative units similar to provinces), though half of our sites are in the Central and Western regions. Swine husbandry practices differ between the North and Extreme North regions where it is common practice in to let swine roam freely, and the Central and Western regions where swine are typically confined to pens. Random forest analyses revealed that the three best predictors of the presence of pH1N1 in swine were contact rates between free-ranging swine and domestic ducks, contact rates between free-ranging swine and wild Columbiformes, and contact rates between humans and ducks. Sites in which swine were allowed to range freely had closer contact with other species than did sites in which swine were kept penned.ConclusionsResults suggest that the practice of allowing swine to roam freely is a significant risk factor for spillover of influenza from humans into swine populations

    Exploring the Influence of Daily Climate Variables on Malaria Transmission and Abundance of Anopheles arabiensis over Nkomazi Local Municipality, Mpumalanga Province, South Africa

    Get PDF
    The recent resurgence of malaria incidence across epidemic regions in South Africa has been linked to climatic and environmental factors. An in-depth investigation of the impact of climate variability and mosquito abundance on malaria parasite incidence may therefore offer useful insight towards the control of this life-threatening disease. In this study, we investigate the influence of climatic factors on malaria transmission over Nkomazi Municipality. The variability and interconnectedness between the variables were analyzed using wavelet coherence analysis. Time-series analyses revealed that malaria cases significantly declined after the outbreak in early 2000, but with a slight increase from 2015. Furthermore, the wavelet coherence and time-lagged correlation analyses identified rainfall and abundance of Anopheles arabiensis as the major variables responsible for malaria transmission over the study region. The analysis further highlights a high malaria intensity with the variables from 1998–2002, 2004–2006, and 2010–2013 and a noticeable periodicity value of 256–512 days. Also, malaria transmission shows a time lag between one month and three months with respect to mosquito abundance and the different climatic variables. The findings from this study offer a better understanding of the importance of climatic factors on the transmission of malaria. The study further highlights the significant roles of An. arabiensis on malaria occurrence over Nkomazi. Implementing the mosquito model to predict mosquito abundance could provide more insight into malaria elimination or control in Africa

    Putative human and avian risk factors for avian influenza virus infections in backyard poultry in Egypt

    No full text
    Highly pathogenic influenza A virus subtype H5N1 causes significant poultry mortality in the six countries where it is endemic and can also infect humans. Egypt has reported the third highest number of poultry outbreaks (n=1084) globally. The objective of this cross-sectional study was to identify putative risk factors for H5N1 infections in backyard poultry in 16 villages in Damietta, El Gharbia, Fayoum, and Menofia governorates from 2010-2012. Cloacal and tracheal swabs and serum samples from domestic (n=1242) and wild birds (n=807) were tested for H5N1 via RT-PCR and hemagglutination inhibition, respectively. We measured poultry rearing practices with questionnaires (n=306 households) and contact rates among domestic and wild bird species with scan sampling. Domestic birds (chickens, ducks, and geese, n=51) in three governorates tested positive for H5N1 by PCR or serology. A regression model identified a significant correlation between H5N1 in poultry and the practice of disposing of dead poultry and poultry feces in the garbage (F=15.7, p&lt;0.0001). In addition, contact between domestic and wild birds was more frequent in villages where we detected H5N1 in backyard flocks (F=29.5, p&lt;0.0001)

    Investigating the resurgence of malaria prevalence in South Africa between 2015 and 2018 : a scoping review

    Get PDF
    BACKGROUND : Malaria remains a serious concern in most African countries, causing nearly one million deaths globally every year. This review aims to examine the extent and nature of the resurgence of malaria transmission in South Africa. METHODS : Using the Arksey and O'Malley framework, this scoping review includes articles published between the years 2015 and 2018 on the resurgence of malaria occurrence in South Africa. Articles were searched between October 2018 to January 2019 using the following electronic databases: CINAHL, Pubmed, Science Direct and SCOPUS. Grey literature from Google Scholar was also hand searched. Key search terms and subject headings such as climate variables, climate changes, climatic factors, malaria resurgence, malaria reoccurrence and malaria increase over epidemic regions in South Africa were used to identify relevant articles. Three independent reviewers performed the selection and characterization of articles, and the data collected were synthesized qualitatively. RESULTS : A total number of 534 studies were identified. Among these, 24 studies met the inclusion criteria. The results were grouped by factors (four main themes) that influenced the malaria resurgence: Climatic, Epidemiological, Socio-economic, and Environmental factors. Climatic factors were found to be the major factor responsible for the resurgence of malaria, as more than 55% of the selected articles were climate-focused. This was followed by epidemiological, socio-economic and environmental factors, in that order. Grey literature from Google Scholar yielded no results. CONCLUSION : This study shows that malaria transmission in South Africa is more associated with climate. Climate-based malaria models could be used as early warning systems for malaria over the epidemic regions in South Africa. Since epidemiological factors also play significant roles in malaria transmission, regular and unrelaxed use of Indoor Residual Spraying (IRS) should be encouraged in these regions. Individuals should also be educated on the importance and the usefulness of these deliveries. While some studies have indicated that the vectors have developed resistance to insecticides, continuous research on developing new insecticides that could alter the resistance are encouraged. Furthermore, all efforts to eradicate malaria in South Africa must also target malaria-endemic neighbouring countries.The University of Pretoria Institute for Sustainable Malaria Control (UP ISMC) and Malaria Research Control (MRC)https://benthamopen.com/TOPHJ/home/am2021School of Health Systems and Public Health (SHSPH
    corecore