2 research outputs found

    Human endogenous retrovirus onco-exaptation counters cancer cell senescence through calbindin.

    No full text
    Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterizes most cancer types, linked with disease outcomes. However, the underlying processes are incompletely understood. We show that elevated transcription of HERVH proviruses predicts survival of lung squamous cell carcinoma (LUSC) and identify an isoform of CALB1, encoding Calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression initiates in pre-invasive lesions and associates with their progression. Calbindin loss in LUSC cell lines impairs in vitro and in vivo growth and triggers senescence, consistent with a pro-tumor effect. However, Calbindin also directly controls the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells become the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition are offset by the prevention of SASP and pro-tumor inflammation at later stages

    Antibodies against endogenous retroviruses promote lung cancer immunotherapy.

    No full text
    B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response
    corecore