69 research outputs found

    Protecting podocytes: how good do we need to be?

    Get PDF
    Progression of many glomerular diseases has been firmly tied to a loss of podocytes, followed by a deterioration of glomerular architectural stability eventuating in segmental, and ultimately global, sclerosis. Recent studies have begun to clarify the nature of the autonomous (disease-independent) aspects of this process, as well as to explore mechanistically the ‘unreasonable effectiveness’ of angiotensin blockade in slowing glomerular disease progression. Quantitative monitoring of podocyte loss (e.g., to assess therapy) remains a challenge

    The Effect of a Gluten-Free Diet in Children With Difficult-to-Manage Nephrotic Syndrome

    Get PDF
    Case reports have linked childhood nephrotic syndrome to food sensitivity, including gluten. We report our experience with 8 children (6 boys, 2 girls; age at implementation of special diet 2–14 years) with difficult-to-manage nephrotic syndrome who were placed on a gluten-free diet for 3.4 ± 4.3 years (range, 0.6–14 years) and who had clinical improvement enabling reduction or discontinuation in steroid dosage

    Podocytopenia and disease severity in IgA nephropathy

    Get PDF
    Podocytopenia and disease severity in IgA nephropathy.BackgroundIgA nephropathy is a common form of progressive glomerular disease, associated with proliferation of mesangial cells and mesangial deposition of IgA. The present study was designed to investigate functional and morphological covariates of disease severity in patients with IgA nephropathy.MethodsGlomerular hemodynamics, permselectivity and ultrastructure were studied in 17 adult patients with IgA nephropathy using inulin, para-aminohippuric acid (PAH) and 3H-Ficoll clearances and morphometric methods. A mathematical model of macromolecule permeation through a heteroporous membrane was used to characterize glomerular permselectivity. Controls consisted of 14 healthy living kidney donors and 12 healthy volunteers.ResultsThe patients were heterogeneous in their disease severity, but as a group had a decreased glomerular filtration rate (GFR) and increased urinary protein excretion compared to controls [63 ± 29 SD vs. 104 ± 23 mL/min/1.73 m2, P < 0.001, and (median) 1.34 vs. 0.11 g/day, P < 0.0001, respectively). A multivariate analysis of structural and functional relationships revealed GFR depression to be most strongly correlated with the prevalence of global glomerular sclerosis (t = -4.073, P = 0.002). Those patients with the most severe glomerular dysfunction had a reduced number of glomerular visceral epithelial cells (podocytes) per glomerulus. The degree of podocytopenia was related to the extent of glomerular sclerosis and of impairment of permselectivity and GFR, with worsening injury below an apparent threshold podocyte number of about 250 cells per glomerulus. There were no corresponding correlations between these indices of injury and the number of mesangial and endothelial cells.ConclusionsOur findings show that podocyte loss is a concomitant of increasing disease severity in IgA nephropathy. This suggests that podocyte loss may either cause or contribute to the progressive proteinuria, glomerular sclerosis and filtration failure seen in this disorder

    Plasma Zonulin Levels in Childhood Nephrotic Syndrome

    Get PDF
    Objective: We conducted this study to test the hypothesis that plasma zonulin levels are elevated in pediatric patients with nephrotic syndrome compared to healthy controls.Study Design: Plasma zonulin levels were measured by ELISA in 114 children enrolled in the NEPTUNE study. Clinical and laboratory data were retrieved from the NEPTUNE database.Results: The median age of the patients was 10 (IQR = 5 to 14) years, 59 were male, 64 had minimal change disease, 47 focal segmental glomerulosclerosis, median eGFR was 96 (IQR = 80 to 114) ml/min/1.73 m2, and median urine protein:creatinine ratio was 0.5 (IQR = 0.1 to 3.4) (g:g). The plasma zonulin level was 14.2 ± 5.0 vs. 10.2 ± 2.5 ng/ml in healthy adults in a report using the same assay kit, P = 0.0025. These findings were confirmed in an independent cohort of children with nephrotic syndrome compared to healthy age-matched controls, P = 0.01. Zonulin concentrations did not differ in children with minimal change disease vs. focal segmental glomerulosclerosis, frequently relapsing vs. steroid-dependent vs. steroid-resistant clinical course, and were not influenced by the immunosuppressive treatment regimen. There was no relationship between plasma zonulin levels and the absolute or percentage change in proteinuria from enrollment until the time of the zonulin assay.Conclusion: Plasma zonulin levels are elevated in childhood nephrotic syndrome regardless of level of proteinuria or specific treatment. The cause of the high plasma zonulin levels and whether zonulin contributes to glomerular injury requires further study

    Urinary Epidermal Growth Factor as a Marker of Disease Progression in Children With Nephrotic Syndrome.

    Get PDF
    Introduction: Childhood-onset nephrotic syndrome has a variable clinical course. Improved predictive markers of long-term outcomes in children with nephrotic syndrome are needed. This study tests the association between baseline urinary epidermal growth factor (uEGF) excretion and longitudinal kidney function in children with nephrotic syndrome. Methods: The study evaluated 191 participants younger than 18 years enrolled in the Nephrotic Syndrome Study Network, including 118 with their first clinically indicated kidney biopsy (68 minimal change disease; 50 focal segmental glomerulosclerosis) and 73 with incident nephrotic syndrome without a biopsy. uEGF was measured at baseline for all participants and normalized by the urine creatinine (Cr) concentration. Renal epidermal growth factor (EGF) mRNA was measured in the tubular compartment microdissected from kidney biopsy cores from a subset of patients. Linear mixed models were used to test if baseline uEGF/Cr and EGF mRNA expression were associated with change in estimated glomerular filtration rate (eGFR) over time. Results: Higher uEGF/Cr at baseline was associated with slower eGFR decline during follow-up (median follow-up = 30 months). Halving of uEGF/Cr was associated with a decrease in eGFR slope of 2.0 ml/min per 1.73 m Conclusion: uEGF/Cr may be a useful noninvasive biomarker that can assist in predicting the long-term course of kidney function in children with incident nephrotic syndrome

    Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis.

    Get PDF
    Acute Tubular Necrosis (ATN) causes severe damage to the kidney epithelial tubular cells and is often associated with severe renal dysfunction. Stem-cell based therapies may provide alternative approaches to treating of ATN. We have previously shown that clonal c-kit(pos) stem cells, derived from human amniotic fluid (hAFSC) can be induced to a renal fate in an ex-vivo system. Herein, we show for the first time the successful therapeutic application of hAFSC in a mouse model with glycerol-induced rhabdomyolysis and ATN. When injected into the damaged kidney, luciferase-labeled hAFSC can be tracked using bioluminescence. Moreover, we show that hAFSC provide a protective effect, ameliorating ATN in the acute injury phase as reflected by decreased creatinine and BUN blood levels and by a decrease in the number of damaged tubules and apoptosis therein, as well as by promoting proliferation of tubular epithelial cells. We show significant immunomodulatory effects of hAFSC, over the course of ATN. We therefore speculate that AFSC could represent a novel source of stem cells that may function to modulate the kidney immune milieu in renal failure caused by ATN

    Kidney disease in nail–patella syndrome

    Get PDF
    Nail–patella syndrome (NPS) is a pleiotropic autosomal-dominant disorder due to mutations in the gene LMX1B. It has traditionally been characterized by a tetrad of dermatologic and musculoskeletal abnormalities. However, one of the most serious manifestations of NPS is kidney disease, which may be present in up to 40% of affected individuals. Although LMX1B is a developmental LIM-homeodomain transcription factor, it is expressed in post-natal life in the glomerular podocyte, suggesting a regulatory role in that cell. Kidney disease in NPS seems to occur more often in some families with NPS, but it does not segregate with any particular mutation type or location. Two patterns of NPS nephropathy may be distinguished. Most affected individuals manifest only an accelerated age-related loss of filtration function in comparison with unaffected individuals. Development of symptomatic kidney failure is rare in this group, and proteinuria (present in approximately one-third) does not appear to be progressive. A small minority (5–10%) of individuals with NPS develop nephrotic-range proteinuria as early as childhood or young adulthood and progress to end-stage kidney failure over variable periods of time. It is proposed that this latter group reflects the effects of more global podocyte dysfunction, possibly due to the combination of a mutation in LMX1B along with an otherwise innocuous polymorphism or mutation involving any of several genes expressed in podocytes (e.g. NPHS2, CD2AP), the transription of which is regulated by LMX1B

    Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach

    Get PDF
    The Nephrotic Syndrome Study Network (NEPTUNE) is a North American multi-center collaborative consortium established to develop a translational research infrastructure for Nephrotic Syndrome. This includes a longitudinal observational cohort study, a pilot and ancillary studies program, a training program, and a patient contact registry. NEPTUNE will enroll 450 adults and children with minimal change disease, focal segmental glomerulosclerosis and membranous nephropathy for detailed clinical, histopathologic, and molecular phenotyping at the time of clinically-indicated renal biopsy. Initial visits will include an extensive clinical history, physical examination, collection of urine, blood and renal tissue samples, and assessments of quality of life and patient-reported outcomes. Follow-up history, physical measures, urine and blood samples, and questionnaires will be obtained every 4 months in the first year and bi-annually, thereafter. Molecular profiles and gene expression data will be linked to phenotypic, genetic, and digitalized histologic data for comprehensive analyses using systems biology approaches. Analytical strategies were designed to transform descriptive information to mechanistic disease classification for Nephrotic Syndrome and to identify clinical, histological, and genomic disease predictors. Thus, understanding the complexity of the disease pathogenesis will guide further investigation for targeted therapeutic strategies
    • …
    corecore