2 research outputs found

    Overexpression of Wild-Type Human Alpha-Synuclein Causes Metabolism Abnormalities in Thy1-aSYN Transgenic Mice

    Get PDF
    Parkinson’s disease is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons, pathological accumulation of alpha-synuclein and motor symptoms, but also by non-motor symptoms. Metabolic abnormalities including body weight loss have been reported in patients and could precede by several years the emergence of classical motor manifestations. However, our understanding of the pathophysiological mechanisms underlying body weight loss in PD is limited. The present study investigated the links between alpha-synuclein accumulation and energy metabolism in transgenic mice overexpressing Human wild-type (WT) alpha-synuclein under the Thy1 promoter (Thy1-aSYN mice). Results showed that Thy1-aSYN mice gained less body weight throughout life than WT mice, with significant difference observed from 3 months of age. Body composition analysis of 6-month-old transgenic animals showed that body mass loss was due to lower adiposity. Thy1-aSYN mice displayed lower food consumption, increased spontaneous activity, as well as a reduced energy expenditure compared to control mice. While no significant change in glucose or insulin responses were observed, Thy1-aSYN mice had significantly lower plasmatic levels of insulin and leptin than control animals. Moreover, the pathological accumulation of alpha-synuclein in the hypothalamus of 6-month-old Thy1-aSYN mice was associated with a down-regulation of the phosphorylated active form of the signal transducer and activator of transcription 3 (STAT3) and of Rictor (the mTORC2 signaling pathway), known to couple hormonal signals with the maintenance of metabolic and energy homeostasis. Collectively, our results suggest that (i) metabolic alterations are an important phenotype of alpha-synuclein overexpression in mice and that (ii) impaired STAT3 activation and mTORC2 levels in the hypothalamus may underlie the disruption of feeding regulation and energy metabolism in Thy1-aSYN mice

    Loss of Human Beta Cell Identity in a Reconstructed Omental Stromal Cell Environment

    No full text
    In human type 2 diabetes, adipose tissue plays an important role in disturbing glucose homeostasis by secreting factors that affect the function of cells and tissues throughout the body, including insulin-producing pancreatic beta cells. We aimed here at studying the paracrine effect of stromal cells isolated from subcutaneous and omental adipose tissue on human beta cells. We developed an in vitro model wherein the functional human beta cell line EndoC-βH1 was treated with conditioned media from human adipose tissues. By using RNA-sequencing and western blotting, we determined that a conditioned medium derived from omental stromal cells stimulates several pathways, such as STAT, SMAD and RELA, in EndoC-βH1 cells. We also observed that upon treatment, the expression of beta cell markers decreased while dedifferentiation markers increased. Loss-of-function experiments that efficiently blocked specific signaling pathways did not reverse dedifferentiation, suggesting the implication of more than one pathway in this regulatory process. Taken together, we demonstrate that soluble factors derived from stromal cells isolated from human omental adipose tissue signal human beta cells and modulate their identity
    corecore