13 research outputs found
Fetal Alcohol Spectrum Disorders: Survey of Healthcare Providers after Continuing Education
Fetal alcohol spectrum disorders (FASD) occur as a result of prenatal alcohol exposure and are commonly associated with intellectual disability. Maternal alcohol consumption affects fetal development resulting in numerous lifelong physical, mental, and neurobehavioral abnormalities. To promote prevention of prenatal alcohol exposure and intervention to mitigate alcohol’s postnatal effects, the Centers for Disease Control and Prevention (CDC) provides continuing education to healthcare providers through their FASD Regional Training Centers (RTCs). An online survey evaluated healthcare providers’ perceived competency after training. Cover letters with the survey link were electronically mailed to healthcare providers, who received training between 2002 and 2009 from the Midwest and Southeast RTCs. Eighty-two providers who treated women or children responded to the survey (7.5% response rate). Approximately 86% of providers who treated women have identified women ‘at risk’ for alcohol abuse with 90% indicating they would refer to Substance Abuse or Mental Health Services. However, over 25% perceived lack of training and limited time as barriers in treating women of childbearing age for at-risk drinking. Over 90% of providers who treated children reported feeling competent in recognizing FAS and other alcohol-related effects. Yet, only 23% of providers for children reported using FASD diagnostic schema and were more apt to use growth charts (70%) rather than lip philtrum guides (58%) or palpebral fissure length measurements (50%), tools typically used in FAS determination. These results suggest a need for training to focus on methodology that assists providers to easily incorporate screening, diagnostic, and treatment procedures into their daily practice
Keck Interferometer autoaligner: algorithms and techniques
The Keck Interferometer includes an autoalignment system consisting of pop-up targets located at strategic locations along the beam trains of each arm of the instrument along with a sensor and control system. We briefly describe the hardware of the system and then proceed to a description of the two operational modes of the system. These are: 1) to provide an initial alignment of the coude paths in each arm, and 2) to recover coude alignments between changes of the static delay sled positions. For the initial alignment mode, we review the system performance requirements along with the software used for image acquisition and centroiding. For coudé alignment recovery, we describe beam-train surveys through the static delay (Long Delay Line) and criteria for a successful recovery of a coudé alignment. Finally, we describe the results of testing of the autoalignment system
JWST mirror and actuator performance at cryo-vacuum
The James Webb Space Telescope (JWST) telescope’s Secondary Mirror Assembly (SMA) and eighteen Primary Mirror Segment Assemblies (PMSAs) are each actively controlled in rigid body position via six hexapod actuators. Each of the PMSAs additionally has a radius of curvature actuator. The mirrors are stowed to the mirror support structure to survive the launch environment and then must be deployed 12.5 mm to reach the nominally deployed position before the Wavefront Sensing & Control (WFSC) alignment and phasing process begins. JWST requires testing of the full optical system in a Cryogenic Vacuum (CV) environment before launch. The cryo vacuum test campaign was executed in Chamber A at the Johnson Space Center (JSC) in Houston Texas. The test campaign consisted of an ambient vacuum test, a cooldown test, a cryo stable test at 65 Kelvin, a warmup test, and finally a second ambient vacuum test. Part of that test campaign was the functional and performance testing of the hexapod actuators on the flight mirrors. This paper will describe the testing that was performed on all 132 hexapod and radius of curvature actuators. The test campaign first tests actuators individually then tested how the actuators perform in the hexapod system. Telemetry from flight sensors on the actuators and measurements from external metrology devices such as interferometers, photogrammetry systems and image analysis was used to demonstrate the performance of the JWST actuators. The mirror move commanding process was exercised extensively during the JSC CV test and many examples of accurately commanded moves occurred. The PMSA and SMA actuators performed extremely well during the JSC CV test, and we have demonstrated that the actuators are fully functional both at ambient and cryo temperatures and that the mirrors will go to their commanded positions with the accuracy needed to phase and align the telescope
Visibility science operations with the Keck Interferometer
The visibility science mode of the Keck Interferometer fully transitioned into operations with the successful completion of its operational readiness review in April 2004. The goal of this paper is to describe this science mode and the operations structure that supports it
A Randomized, Double-Blind, Placebo-Controlled Trial of Lessertia frutescens in Healthy Adults
OBJECTIVES: Indigenous medicines are widely used throughout Africa, despite a lack of scientific evidence for their safety or efficacy. The aims of this study were: (a) to conduct a pilot study of the safety of a common indigenous South African phytotherapy, Lessertia frutescens (Sutherlandia), in healthy adults; and (b) to contribute to establishing procedures for ethical and scientifically rigorous clinical trials of African indigenous medicines. DESIGN: A randomized, double-blind, placebo-controlled trial of Sutherlandia leaf powder in healthy adults. SETTING: Tiervlei Trial Centre, Karl Bremer Hospital, Bellville, South Africa. PARTICIPANTS: 25 adults who provided informed consent and had no known significant diseases or allergic conditions nor clinically abnormal laboratory blood profiles during screening. INTERVENTION: 12 participants randomized to a treatment arm consumed 400 mg capsules of Sutherlandia leaf powder twice daily (800 mg/d). 13 individuals randomized to the control arm consumed a placebo capsule. Each participant received 180 capsules for the trial duration of 3 mo. OUTCOME MEASURES: The primary endpoint was frequency of adverse events; secondary endpoints were changes in physical, vital, blood, and biomarker indices. RESULTS: There were no significant differences in general adverse events or physical, vital, blood, and biomarker indices between the treatment and placebo groups (p > 0.05). However, participants consuming Sutherlandia reported improved appetite compared to those in the placebo group (p = 0.01). Although the treatment group exhibited a lower respiration rate (p < 0.04) and higher platelet count (p = 0.03), MCH (p = 0.01), MCHC (p = 0.02), total protein (p = 0.03), and albumin (p = 0.03), than the placebo group, these differences remained within the normal physiological range, and were not clinically relevant. The Sutherlandia biomarker canavanine was undetectable in participant plasma. CONCLUSION: Consumption of 800 mg/d Sutherlandia leaf powder capsules for 3 mo was tolerated by healthy adults
Keck Interferometer autoaligner: algorithms and techniques
The Keck Interferometer includes an autoalignment system consisting of pop-up targets located at strategic locations along the beam trains of each arm of the instrument along with a sensor and control system. We briefly describe the hardware of the system and then proceed to a description of the two operational modes of the system. These are: 1) to provide an initial alignment of the coude paths in each arm, and 2) to recover coude alignments between changes of the static delay sled positions. For the initial alignment mode, we review the system performance requirements along with the software used for image acquisition and centroiding. For coudé alignment recovery, we describe beam-train surveys through the static delay (Long Delay Line) and criteria for a successful recovery of a coudé alignment. Finally, we describe the results of testing of the autoalignment system
JWST mirror and actuator performance at cryo-vacuum
The James Webb Space Telescope (JWST) telescope’s Secondary Mirror Assembly (SMA) and eighteen Primary Mirror Segment Assemblies (PMSAs) are each actively controlled in rigid body position via six hexapod actuators. Each of the PMSAs additionally has a radius of curvature actuator. The mirrors are stowed to the mirror support structure to survive the launch environment and then must be deployed 12.5 mm to reach the nominally deployed position before the Wavefront Sensing & Control (WFSC) alignment and phasing process begins. JWST requires testing of the full optical system in a Cryogenic Vacuum (CV) environment before launch. The cryo vacuum test campaign was executed in Chamber A at the Johnson Space Center (JSC) in Houston Texas. The test campaign consisted of an ambient vacuum test, a cooldown test, a cryo stable test at 65 Kelvin, a warmup test, and finally a second ambient vacuum test. Part of that test campaign was the functional and performance testing of the hexapod actuators on the flight mirrors. This paper will describe the testing that was performed on all 132 hexapod and radius of curvature actuators. The test campaign first tests actuators individually then tested how the actuators perform in the hexapod system. Telemetry from flight sensors on the actuators and measurements from external metrology devices such as interferometers, photogrammetry systems and image analysis was used to demonstrate the performance of the JWST actuators. The mirror move commanding process was exercised extensively during the JSC CV test and many examples of accurately commanded moves occurred. The PMSA and SMA actuators performed extremely well during the JSC CV test, and we have demonstrated that the actuators are fully functional both at ambient and cryo temperatures and that the mirrors will go to their commanded positions with the accuracy needed to phase and align the telescope
Visibility science operations with the Keck Interferometer
The visibility science mode of the Keck Interferometer fully transitioned into operations with the successful completion of its operational readiness review in April 2004. The goal of this paper is to describe this science mode and the operations structure that supports it