5 research outputs found

    Flame Retardants and Legacy Chemicals in Great Lakes’ Water

    No full text
    The Great Lakes have been the focus of extensive environmental research, but recent data on the aquatic concentrations of emerging compounds, such as flame retardants, are scarce. Water samples from 18 stations on the five Great Lakes were collected in 2011 and 2012 using XAD-2 resin adsorption and analyzed for PCBs, organochlorine pesticides, PAHs, polybrominated diphenyl ethers (PBDEs), and emerging flame retardants, including organophosphate flame retardants (OPEs). Total PCB concentrations ranged from 117 ± 18 pg/L in Lake Superior to 623 ± 113 pg/L in Lake Ontario. Among the organochlorine pesticides, the most abundant was dieldrin, with the highest average concentration of 99 ± 26 pg/L in Lake Erie, followed by <i>p</i>,<i>p′</i>-DDD with an average concentration of 37 ± 8 pg/L in Lake Ontario. Total PAH concentrations were higher in Lakes Erie and Ontario than in Lakes Michigan, Huron, and Superior. Total PBDE concentrations were highest in Lake Ontario (227 ± 75 pg/L), and the most abundant congeners were BDE-47, BDE-99, and BDE-209. Total OPE concentrations ranged between 7.3 ± 4.5 ng/L in Lake Huron to 96 ± 43 ng/L in Lake Erie

    Identification of Marbon in the Indiana Harbor and Ship Canal

    No full text
    Marbon is isomeric with Dechlorane Plus (DP). Both are produced by the Diels–Alder condensation of hexachlorocyclopentadiene with cyclic dienes, and both have elemental compositions of C<sub>18</sub>H<sub>12</sub>Cl<sub>12</sub>. Dechlorane Plus is commonly found in the environment throughout the world, but Marbon has, so far, only been detected at low levels in one sediment core collected near the mouth of the Niagara River in Lake Ontario. Here we report on the concentrations of Marbon and <i>anti</i>-DP in 59 water samples from five Lake Michigan tributaries [the Grand, Kalamazoo, St. Joseph, and Lower Fox Rivers, and the Indiana Harbor and Ship Canal (IHSC)], 10 surface sediment samples from the IHSC, and 2 surface sediment samples from the Chicago Sanitary and Ship Canal. Three Marbon diastereomers were detected in the water and sediment samples from the IHSC, which is far from the location of its previous detection in Lake Ontario. The sum of the concentrations of the three Marbons was greater in the water from the IHSC (<i>N</i> = 11, median =150 pg/L) compared to those in water from the other four tributaries (<i>N</i> = 11–13, medians =0.9–2.0 pg/L). Marbon concentrations in sediment samples from the IHSC were up to 450 ng/g dry weight. <i>Anti</i>-DP was also measured for comparison. Its concentrations were not significantly different among the water samples, but its sediment concentrations in the IHSC were significantly correlated with those of Marbon. The source of Marbon contamination in the IHSC is not clear

    Flame Retardant Metabolites in Addled Bald Eagle Eggs from the Great Lakes Region

    No full text
    Organophosphate esters (OPEs) and other alternative flame retardants including 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB) and bis­(2-ethylhexyl) tetrabromophthalate (BEHTBP) are ubiquitous in the Great Lakes region, having been detected in air, water, and biota samples. In a recent study, however, we showed that concentrations of six OPEs in eagle eggs were generally low (geometric mean 24 ng/g ww), and the two main Firemaster (FM) components, EHTBB and BEHTBP, were below limits of detection. We therefore hypothesized that the low levels of these compounds in bald eagles may be due to a potential rapid metabolic transformation. We measured metabolites of triaryl and trialkyl phosphates and brominated Firemaster (FM) flame retardants in 21 addled bald eagle (Haliaeetus leucocephalus) eggs from 2000 to 2012 from the Michigan Bald Eagle Biosentinel Program archive. Sampling sites were divided into two groups: inland (IN) and Great Lakes (GL) based on breeding areas. Results suggest that the most abundant metabolites in the eggs are 2,3,4,5-tetrabromobenzoic acid (TBBA) (n.d. – 330 ng/g ww), bis­(2-chloroethyl) phosphate (BCEP) (0.38–26 ng/g ww), and bis­(2,3-dibromopropyl) phosphate (BDBPP) (n.d. – 45 ng/g ww). Detection frequencies ranged from 67% for mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) to 100% for most of the other compounds. The relative abundances for these parent/metabolite pairs indicate that the majority of the OPEs can be readily metabolized at various rates, depending on the specific compound

    Updated Polychlorinated Biphenyl Mass Budget for Lake Michigan

    No full text
    This study revisits and updates the Lake Michigan Mass Balance Project (LMMBP) for polychlorinated biphenyls (PCBs) that was conducted in 1994–1995. This work uses recent concentrations of PCBs in tributary and open lake water, air, and sediment to calculate an updated mass budget. Five of the 11 LMMBP tributaries were revisited in 2015. In these five tributaries, the geometric mean concentrations of ∑PCBs (sum of 85 congeners) ranged from 1.52 to 22.4 ng L<sup>–1</sup>. The highest concentrations of PCBs were generally found in the Lower Fox River and in the Indiana Harbor and Ship Canal. The input flows of ∑PCBs from wet deposition, dry deposition, tributary loading, and air to water exchange, and the output flows due to sediment burial, volatilization from water to air, and transport to Lake Huron and through the Chicago Diversion were calculated, as well as flows related to the internal processes of settling, resuspension, and sediment–water diffusion. The net transfer of ∑PCBs is 1240 ± 531 kg yr<sup>–1</sup> out of the lake. This net transfer is 46% lower than that estimated in 1994–1995. PCB concentrations in most matrices in the lake are decreasing, which drove the decline of all the individual input and output flows. Atmospheric deposition has become negligible, while volatilization from the water surface is still a major route of loss, releasing PCBs from the lake into the air. Large masses of PCBs remain in the water column and surface sediments and are likely to contribute to the future efflux of PCBs from the lake to the air

    Alternative Flame Retardant, 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine, in an E‑waste Recycling Facility and House Dust in North America

    No full text
    A high molecular weight compound, 2,4,6-tris­(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ), was detected during the analysis of brominated flame retardants in dust samples collected from an electrical and electronic waste (e-waste) recycling facility in Ontario, Canada. Gas chromatography coupled with both high-resolution and low-resolution mass spectrometry (MS) was used to determine TTBP-TAZ’s chemical structure and concentrations. To date, TTBP-TAZ has only been detected in plastic casings of electrical and electronic equipment and house dust from The Netherlands. Here we report on the concentrations of TTBP-TAZ in selected samples from North America: e-waste dust (<i>n</i> = 7) and air (<i>n</i> = 4), residential dust (<i>n</i> = 30), and selected outdoor air (<i>n</i> = 146), precipitation (<i>n</i> = 19), sediment (<i>n</i> = 11) and water (<i>n</i> = 2) samples from the Great Lakes environment. TTBP-TAZ was detected in all the e-waste dust and air samples, and in 70% of residential dust samples. The median concentrations of TTBP-TAZ in these three types of samples were 5540 ng/g, 5.75 ng/m<sup>3</sup> and 6.76 ng/g, respectively. The flame retardants 2,4,6-tribromophenol, tris­(2,3-dibromopropyl) isocyanurate, and 3,3′,5,5′-tetrabromobisphenol A bis­(2,3-dibromopropyl) ether, BDE-47 and BDE-209 were also measured for comparison. None of these other flame retardants concentrations was significantly correlated with those of TTBP-TAZ in any of the sample types suggesting different sources. TTBP-TAZ was not detected in any of the outdoor environmental samples, which may relate to its application history and physicochemical properties. This is the first report of TTBP-TAZ in North America
    corecore